Chapter 1:
1. Introduction and Review of Literature
 1.1 Hepatitis Viruses 1
 1.2 Hepatitis E 4
 1.2.1 Epidemiology of HEV 4
 1.2.2 Mode of Transmission 6
 1.2.3 Clinical features of HEV 6
 1.2.4 Classification of HEV 8
 1.2.5 Pathology and histopathology 9
 1.2.6 Animal models and in-vitro culture 11
 1.2.7 Morphology of HEV/ Genome Organization 13
 1.3. Virus-Host Interactions 21
 1.4. The Yeast Two-Hybrid System 27
 1.5. Synopsis 29

Chapter 2:
2. Materials and Methods 35
 2.1. Materials 35
 2.1.1. Reagents and Enzymes 35
 2.1.2. Antibodies 35
 2.1.3. Plasmids 35
 2.2. Methods 36
 2.2.1. Competent cell preparation and transformation 36
 2.2.2. DNA Isolation 38
 2.2.3. Filter β-galactosidase assay 38
 2.2.4. Liquid β-galactosidase assay 39
 2.2.5. Yeast two-hybrid techniques 40
 2.2.6. Combined Transformation and Genetic Technique verification of protein-protein interactions in the two-hybrid system 41
 2.2.7. Amplification of Liver Library 42
 2.2.8. Library Screening 43
 2.2.9. Transient transfection 43
 2.2.10. Labeling of cells 44
 2.2.11. Immunoprecipitation 45
 2.2.12. Phosphatase experiments 45
 2.2.13. Immunofluorescence Analysis 46
 2.2.15. Histidine-binding and pull down experiments 47

Chapter 3:
3. Results I 54
 3.1. ORF3 protein shows dimerization: 54
 3.2. A 41-amino-acid region of the ORF3 protein is involved in dimerization 56
 3.3. Self-association of the homodimerization domain 58
 3.4. Proteins ORF2 and ORF3 co-localize 59
 3.5. The HEV ORF2 and ORF3 interact with each other 60
 3.6. A 25 amino acid region of the ORF3 protein binds to the full-length ORF2 protein 61
3.7. The Ser-80 residue plays a key role in ORF2-ORF3 interactions 62
3.8. Phosphorylation at Ser-80 of the ORF3 protein is essential for the ORF2-ORF3 interaction 65
3.9. Phosphorylated ORF3 protein preferentially interacts with the non-glycosylated form of ORF2 67

Chapter 4:
4. Results II 69
4.1. Screening of the human liver cDNA library for cellular proteins that interact with ORF3 69
4.2 \(\alpha_1\)-microglobulin/bikunin Precursor 71
4.3. The \(\alpha_1\)-microglobin/ bikunin Precursor is capable of Self-Association 74
4.4. Interaction of full length AMBP with ORF3 77
4.5 Both \(\alpha_1\)-microglobulin and bikunin interact with ORF3 78
4.6 Co-localization of \(\alpha_1\)-microglobulin and bikunin with ORF3 81

Chapter 5:
5. Discussion 83
5.1 ORF3 Self-association 84
5.2 Interaction of ORF3 with capsid protein ORF2 88
5.3 ORF3 interacts with liver specific \(\alpha_1\)-microglobulin/ Bikunin Precursor 93
5.4 \(\alpha_1\)-microglobulin Bikunin Precursor 95

Bibliography 111