SYMBOLS

Chapter 3

$T1$
Relaxation time (also known as the spin-lattice relaxation time) in MRI

W
Neighborhood centered around location (m,n)

T
Threshold derived for the equalized image

M
Masking Matrix

z_i
Random variable indicating intensity

$p(z)$
Histogram of the intensity levels in a region

L
Number of possible intensity levels

m
Mean (average) intensity.

$\mu_2(z)$
Second moment

σ^2
Variance

$P(ai)$
Probabilities with the pixel values a_i

$\phi(X,t)$
Level Set Function

F
Velocity term that describes the level set evolution

$\alpha \in [0,1]$
Parameter that is set beforehand to control how smooth the contour should be

CHAPTER 4

σ
Standard deviation of the distribution

$P(i,j|\Delta x,\Delta y)$
Relative frequency separated by a pixel distance $(\Delta x, \Delta y)$

$P(i,j|d,\theta)$
Second order probability values for changes between gray level i and j at distance d a particular angle θ

G
Number of gray levels used

μ
Mean value of P
\[\mu_x, \mu_y, \sigma_x, \sigma_y \] Means and Standard Deviations of \(P_x \) and \(P_y \)

\[x(i) \] \(i \)th entry obtained by summing the rows of \(P(i,j) \)

\[X_i \] Input vector for the \(i \)th example

\[d_i \] Desired output for the \(i \)th example

\[N \] Sample size used in the NN.

\[J \] Jacobian Matrix

\[\lambda \] Levenberg's damping factor,

\[\nabla \] Weight update vector

\[E \] Error Vector

\[i=0, \ldots, N-1 \] Number of output processing elements in NN

\[N \] Number of patterns in the training data set

\[y_{ij} \] Estimated network emissions output for pattern \(i \) at processing element \(j \)

\[d_{ij} \] Actual output for emissions exemplar \(i \) at processing element \(j \).

\[T_2 \] Relaxation time (also known as the spin-lattice relaxation time) in MRI

\[dy_{ij} \] Demoralized network emissions output for pattern \(i \) at processing element \(j \)

\[dd_{ij} \] Demoralized desired network emissions output for exemplar \(i \) at processing element \(j \).

Chapter 5

\[LBP_{N,R} \] basic LBP operator

\[n_c \] the gray value of the central pixel

\[n_i \] is the gray value of \(i \)th neighboring pixel

\[i=0, \ldots, N-1 \] \(N \) is the total number of involved neighboring pixels

\[R \] is the radius of the neighborhood

\[U_p(n, r) \] histogram of the texture image
Where is the maximal LBP pattern value.

Uniform LBP operator

Using only uniform patterns

denote a specific uniform LBP pattern

The pair specifies a uniform pattern

is the rotation of the pattern

denote the rotation of image $I(x,y)$ by α degree

denotes the circular bitwise right rotation of bit sequence x by i steps

Rotation-invariant LBP Patterns

Original data set X of dimension p

Transformed set of smaller dimension L

set of n data vectors

an empirical mean vector of dimensions $p \times 1$

Matrix which Stores mean-subtracted data of dimension $n \times p$

an $n \times 1$ column vector of all 1s

is a p-by-p diagonal matrix of positive numbers $\sigma_{(k)}$, called the singular values of X