δ Semi Generalized Star Closed (δsg*-closed) Sets in Topological Spaces

2.1 Introduction

Velicko (1968) introduced δ-open sets which are stronger than open sets and proved that the collection of δ-open sets denoted by τδ formed a coarser topology on (X, τ). Norman Levine (1970) introduced the concept of generalized closed (briefly g-closed) sets. By combining the concepts of δ-closedness and g-closedness, Dontchev and Ganster (1996) proposed a class of generalized closed sets called δg-closed sets. The idea of δ-semi open sets was initiated by Park (1997). Lee (2001) studied its applications. Park (2007) introduced and studied two other concepts namely gδs-closed and δgs-closed sets using δ-semi closure and proved that the class of δgs-closed sets is weaker than the class of gδs-closed sets. Sudha (2012) introduced and investigated a stronger form of δg-closed sets namely δg*-closed sets.

In this chapter, a new class of generalized closed sets called δsg*-closed sets using δ-semiclosure (δ-scl) is introduced. Some relationships like dependency, independency with various existing closed sets are analyzed. The class of δsg*-closed sets is weaker than the class of δ-semi closed sets and is stronger than the classes of gδs-closed sets and δgs-closed sets. Further, δsg*-closure operator, δsg*-interior operator and δsg*-open sets are introduced and their properties are obtained. A new characterization of semi weakly Hausdorff spaces which are the spaces with semi-T\(_{1/2}\)-semi regularization is obtained.

2.2 δsg*-Closed Sets

In this section, a new class of generalized closed sets called δ semi generalized star closed (δsg*-closed) sets is defined and some relations between δsg*-closed sets and various existing closed sets are analyzed.

Definition 2.2.1 A subset A of a topological space (X,τ) is called δ semi generalized star -closed (briefly δsg*-closed) set if δ-scl(A) ⊆ U whenever A ⊆ U and U is g-open in (X, τ).
The class of all δg^*-closed sets of (X, τ) is denoted by $\delta SG^*(X, \tau)$.

Proposition 2.2.2 Every δ-semi closed set is a δg^*-closed set but not conversely.

Proof: Let A be a δ-semi closed set then $A = \delta$-scl(A). Let $A \subseteq U$ where U is g-open then δ-scl$(A) = A \subseteq U$. Therefore A is a δg^*-closed set.

Example 2.2.3 Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,c,d\}\}$. In this topology, g-open sets are open sets. Then the set $\{b,c,d\}$ is δg^*-closed but not δ-semi closed.

Lemma 2.2.4 Every δ-closed set is a δ-semi closed set but not conversely.

Proof: Let A be δ-open then $A = \text{int}_\delta(A)$

\[\text{cl}(A) = \text{cl}(\text{int}_\delta(A))\]

we know $A \subseteq \text{cl}(A) = \text{cl}(\text{int}_\delta(A))$

\[A \subseteq \text{cl}(\text{int}_\delta(A))\]

Therefore A is δ-semiopen. i.e. a δ-closed set is δ-semi closed.

Hence δ-scl$(A) \subseteq \text{cl}_\delta(A)$.

Example 2.2.5 Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$. Then the set $\{a\}$ is δ-semi closed but not δ-closed.

Theorem 2.2.6 Every δ-closed set is a δg^*-closed set but not conversely.

Proof: The proof follows from Lemma 2.2.4 and Proposition 2.2.2.

Example 2.2.7 Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$. Then the set $\{b,c\}$ is δg^*-closed but not δ-closed.

Proposition 2.2.8 Every δg^*-closed set is a δg^*-closed set but not conversely.

Proof: Let A be a δg^*-closed set and U be any g-open set containing A in (X, τ). Since A is a δg^*-closed set, $\text{cl}_g(A) \subseteq U$. From Lemma 2.2.4, δ-scl$(A) \subseteq \text{cl}_\delta(A)$ and hence δ-scl$(A) \subseteq U$ and hence A is a δg^*-closed set.
Example 2.2.9 Let \(X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\} \). Then the set \(\{b\} \) is \(\delta\text{sg}^* \)-closed but not \(\delta\text{g}^* \)-closed.

Theorem 2.2.10 Every \(\delta\text{sg}^* \)-closed set is a \(\delta\text{gs} \)-closed set but not conversely.

Proof: Let \(A \) be a \(\delta\text{sg}^* \)-closed set and \(U \) be any open set containing \(A \) in \((X, \tau)\). Since every open set is \(g \)-open and \(A \) is \(\delta\text{sg}^* \)-closed set, \(\delta\text{scl}(A) \subseteq U \). Hence \(A \) is a \(\delta\text{gs} \)-closed set.

Example 2.2.11 Let \(X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b,c\}\} \). Then the set \(\{a,b\} \) is \(\delta\text{gs} \)-closed but not \(\delta\text{sg}^* \)-closed.

Remark 2.2.12 From the above results we get the following relation.

Theorem 2.2.13 Every \(\delta\text{sg}^* \)-closed set is a \(\delta\text{gs} \)-closed set but not conversely.

Proof: Let \(A \) be a \(\delta\text{sg}^* \)-closed set. Let \(A \subseteq U \) where \(U \) is \(\delta \)-open. By Remark 1.1.6 every \(\delta \)-open set is \(g \)-open. Therefore \(U \) is \(g \)-open. Since \(A \) is \(\delta\text{sg}^* \)-closed set, \(\delta\text{scl}(A) \subseteq U \). Therefore \(A \) is a \(\delta\text{gs} \)-closed set.

Example 2.2.14 Let \(X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}\} \). Then the set \(\{a,b,c\} \) is \(\delta\text{gs} \)-closed but not \(\delta\text{sg}^* \)-closed.

Lemma 2.2.15 Every \(\delta \)-semi closed set is semi closed but not conversely.

Proof: Let \(A \) be \(\delta \)-semi closed set,
\[
\text{int}(\text{cl}_\delta(A)) \subseteq A \quad \rightarrow (1)
\]
But we know \(\text{cl}(A) \subseteq \text{cl}_\delta(A) \)
\[
\Rightarrow \text{int}(\text{cl}(A)) \subseteq \text{int}(\text{cl}_\delta(A)) \quad \rightarrow (2)
\]
\((1) \& (2) \Rightarrow \text{int}(\text{cl}(A)) \subseteq A
\]
Therefore \(A \) is semi closed.
Example 2.2.16 Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a,b\}\}. \) Then the set \(\{b\} \) is semi closed but not \(\delta \)-semi closed.

Theorem 2.2.17 Every \(\delta g^* \)-closed set is a \(g \)-closed set but not conversely.

Proof: Let \(A \) be a \(\delta g^* \)-closed set and \(U \) be any open set containing \(A \) in \((X, \tau)\). Since every open set is \(g \)-open and \(A \) is \(\delta g^* \)-closed, \(\delta \)-\(scl(A) \subseteq U \). By Lemma 2.2.15, \(scl(A) \subseteq \delta \)-\(scl(A) \) and hence \(scl(A) \subseteq U \) which implies \(A \) is a \(g \)-closed set.

Example 2.2.18 Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a,b\}, \{a,c\}\}. \) Then the set \(\{c\} \) is \(g \)-closed but not \(\delta g^* \)-closed.

Lemma 2.2.19 Every \(\delta \)-semi closed set is a semi pre closed set but not conversely.

Proof: Let \(int(A) \subseteq A \). Since \(\text{cl}_\delta \rightarrow \text{cl} \) gives \(\text{cl}(A) \subseteq \text{cl}_\delta(A) \), \(\text{cl}(int(A)) \subseteq \text{cl}_\delta(int(A)) \) \(\subseteq \text{cl}_\delta(A) \). Therefore \(\text{cl}(int(A)) \subseteq \text{cl}_\delta(A) \)

\[
\text{int}(\text{cl}(int(A))) \subseteq \text{int}(\text{cl}_\delta(A)) \quad \rightarrow (1)
\]

But \(\text{int}(\text{cl}_\delta(A)) \subseteq A \) [since \(A \) is a \(\delta \)-semi closed set] \(\rightarrow (2) \)

(1) & (2) \(\Rightarrow \) \(\text{int}(\text{cl}(int(A))) \subseteq A \)

\(\Rightarrow \) \(A \) is semi pre closed set

Therefore a \(\delta \)-semi closed set is a semi pre closed set.

Hence \(spcl(A) \subseteq \delta \)-\(scl(A) \).

Example 2.2.20 Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a,b\}\}. \) Then the set \(\{a\} \) is semi pre closed but not \(\delta \)-semi closed.

Theorem 2.2.21 Every \(\delta g^* \)-closed set is a gspr-closed set but not conversely.

Proof: Let \(A \) be a \(\delta g^* \)-closed set and \(U \) be any regular open set containing \(A \) in \((X, \tau)\). Since every regular open set is \(g \)-open [by Remark 1.1.6] and \(A \) is a \(\delta g^* \)-closed set, \(\delta \)-\(scl(A) \subseteq U \). By Lemma 2.2.19, \(spcl(A) \subseteq \delta \)-\(scl(A) \) and hence \(spcl(A) \subseteq U \) and hence \(A \) is a gspr-closed set.
Example 2.2.22 Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$. Then the set $\{a,b\}$ is gspr-closed but not δg^*-closed.

Theorem 2.2.23 Every δg^*-closed set is a πgsp-closed set but not conversely.

Proof: Let A be a δg^*-closed set and U be any π-open set containing A in (X, τ). Since every π-open set is g-open set and A is a δg^*-closed set, $\delta - scl(A) \subseteq U$. By Lemma 2.2.19, $spcl(A) \subseteq \delta - scl(A)$ and hence $spcl(A) \subseteq U$. Therefore A is a πgsp-closed set.

Example 2.2.24 Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{a,b\}\}$. Then the set $\{b\}$ is πgsp-closed but not δg^*-closed.

Theorem 2.2.25 Every δg^*-closed set is a πgs-closed set but not conversely.

Proof: Let A be a δg^*-closed set and U be any π-open set containing A in (X, τ). Since every π-open set is g-open and A is a δg^*-closed set, $\delta - scl(A) \subseteq U$. By Lemma 2.2.15, $scl(A) \subseteq \delta - scl(A)$ and so we have $scl(A) \subseteq U$. Therefore A is a πgs-closed set.

Example 2.2.26 Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{a,b\}, \{a,c\}\}$. Then the set $\{a,c\}$ is πgs-closed but not δg^*-closed.

Lemma 2.2.27 Every δ-semi closed set is a b-closed set but not conversely.

Proof: We know, $cl(A) \subseteq cl_\delta(A)$

\[int(cl(A)) \subseteq int(cl_\delta(A)) \rightarrow (1) \]

\[cl(int(A)) \cap int(cl(A)) \subseteq int(cl(A)) \rightarrow (2) \]

(1) & (2) \Rightarrow $int(cl(A)) \cap int(cl(A)) \subseteq int(cl_\delta(A)) \rightarrow (3) $

If A is δ-semi closed then $int(cl_\delta(A)) \subseteq A \rightarrow (4) $

(3) & (4) \Rightarrow $cl(int(A)) \cap int(cl(A)) \subseteq A$

Therefore A is a b-closed set. Hence $bcl(A) \subseteq \delta - scl(A)$.
Example 2.2.28 Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b,c\}\}. \) Then the set \(\{b\} \) is b-closed but not \(\delta \)-semi closed.

Corollary 2.2.29 For every subset \(A \) of \((X, \tau), \) \(\text{bcl}(A) \subseteq \delta \text{-scl}(A) \)

Theorem 2.2.30 Every \(\delta s^* \)-closed set is a \(\pi gb \)-closed set but not conversely.

Proof: Let \(A \) be \(\delta s^* \)-closed set and \(U \) be any \(\pi \)-open set containing \(A \) in \((X, \tau). \) Since every \(\pi \)-open is \(g \)-open and \(A \) is \(\delta s^* \)-closed set, \(\delta \text{-scl}(A) \subseteq U. \) By Corollary 2.2.29, \(\text{bcl}(A) \subseteq \delta \text{-scl}(A) \) and so we have \(\text{bcl}(A) \subseteq U \) and hence \(A \) is a \(\pi gb \)-closed set.

Example 2.2.31 Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}. \) Then the set \(\{a\} \) is \(\pi gb \)-closed but not \(\delta s^* \)-closed.

Theorem 2.2.32 Every \(\delta s^* \)-closed set is a \(gsp \)-closed set but not conversely.

Proof: Let \(A \) be a \(\delta s^* \)-closed set and \(U \) be any open set containing \(A \) in \((X, \tau). \) Since every open set is \(g \)-open and \(A \) is \(\delta s^* \)-closed set, \(\delta \text{-scl}(A) \subseteq U. \) By Lemma 2.2.19, \(\text{spcl}(A) \subseteq \delta \text{-scl}(A) \) and so we have \(\text{spcl}(A) \subseteq U \) and hence \(A \) is a \(gsp \)-closed set.

Example 2.2.33 Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a,b\}\}. \) Then the set \(\{b\} \) is \(gsp \)-closed but not \(\delta s^* \)-closed.

Remark 2.2.34 The following figure gives the dependence of \(\delta s^* \)-closed set with various eleven closed sets.

In this diagram, \(A \rightarrow B \) represents \(A \) implies \(B \) but not reversible.
Chapter 2

Remark 2.2.35 The following counter examples show that \(\delta sg^* \)-closedness is independent from closedness.

Example 2.2.36 Let \(X = \{a, b, c, d\} \), \(\tau = \{X, \phi, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,c,d\}\} \). In this topology the subset \(\{a,b\} \) is \(\delta sg^* \)-closed but not closed.

Example 2.2.37 Let \(X = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}, \{a,b\}, \{a,c\}\} \). In this topology the subset \(\{c\} \) is closed but not \(\delta sg^* \)-closed.

Remark 2.2.38 The following counter examples show that \(\delta sg^* \)-closedness is independent from \(\alpha \)-closedness, semiclosedness and \(b \)-closedness.

Example 2.2.39 Let \(X = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}, \{a,b\}\} \). In this topology the subset \(\{b\} \) is \(\alpha \)-closed, semi closed and \(b \)-closed but not \(\delta sg^* \)-closed.

Example 2.2.40 Let \(X = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}, \{a,b\}\} \). In this topology the subset \(\{a,c\} \) is \(\delta sg^* \)-closed but not \(\alpha \)-closed, semiclosed and \(b \)-closed.

Remark 2.2.41 The following counter examples show that \(\delta sg^* \)-closedness is independent from semi-pre closedness, \(sg \)-closedness, \(g^*s \)-closedness and \(g^#s \)-closedness.

Example 2.2.42 Let \(X = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}, \{a,b\}\} \). In this topology the subset \(\{b\} \) is semi pre closed, \(sg \)-closed, \(g^*s \)-closed and \(g^#s \)-closed but not \(\delta sg^* \)-closed.

Example 2.2.43 Let \(X = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}, \{a,b\}\} \). In this topology the subset \(\{a,c\} \) is \(\delta sg^* \)-closed but not semi pre closed, \(sg \)-closed, \(g^*s \)-closed and \(g^#s \)-closed.

Remark 2.2.44 The following counter examples show that \(\delta sg^* \)-closedness is independent from \(g \)-closedness, \(ag \)-closedness, \(a\#g \)-closedness, \(g^* \)-closedness, \(\delta g \)-closedness, \(w\delta g^* \)-closedness and \(\delta \#g \)-closedness.

Example 2.2.45 Let \(X = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}\} \). In this topology the subset \(\{c\} \) is \(g \)-closed, \(ag \)-closed, \(a\#g \)-closed, \(g^* \)-closed, \(gp \)-closed, \(\delta g \)-closed, \(w\delta g^* \)-closed and \(\delta \#g \)-closed but not \(\delta sg^* \)-closed.

Example 2.2.46 Let \(X = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\} \). In this topology the subset \(\{a\} \) is \(\delta sg^* \)-closed but not \(g \)-closed, \(ag \)-closed, \(a\#g \)-closed, \(g^* \)-closed, \(gp \)-closed, \(\delta g \)-closed, \(w\delta g^* \)-closed and \(\delta \#g \)-closed.
Remark 2.2.47 The following counter examples show that δsg^*-closedness is independent from pre closedness, g^*-closedness, \hat{g}-closedness, g^p-closedness and $(gs)^*$-closedness.

Example 2.2.48 Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$. In this topology the subset $\{b\}$ is δsg^*-closed but not pre closed, g^*-closed, \hat{g}-closed, g^p-closed and $(gs)^*$-closed.

Example 2.2.49 Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}\}$. In this topology the subset $\{c\}$ is pre closed, g^*-closed, \hat{g}-closed, g^p-closed and $(gs)^*$-closed but not δsg^*-closed.

Remark 2.2.50 The following counter examples show that δsg^*-closedness is independent from $g\alpha$-closedness, αg^*-closedness, sg^*-closedness, $g\delta$-closedness, $\delta g^\#$-closedness and Δ^*-closedness.

Example 2.2.51 Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$. In this topology the subset $\{b\}$ is δsg^*-closed but not $g\alpha$-closed, αg^*-closed, sg^*-closed, $g\delta$-closed, $\delta g^\#$-closed and Δ^*-closed.

Example 2.2.52 Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}\}$. In this topology the subset $\{c\}$ is $g\alpha$-closed, αg^*-closed, sg^*-closed, $g\delta$-closed, $\delta g^\#$-closed and Δ^*-closed but not δsg^*-closed.

Remark 2.2.53 The following counter examples show that δsg^*-closedness is independent from πg-closedness, $\pi g\alpha$-closedness and πgp-closedness.

Example 2.2.54 Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,c,d\}\}$. In this topology the subset $\{c\}$ is δsg^*-closed but not πg-closed, $\pi g\alpha$-closed and πgp-closed.

Example 2.2.55 Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,c,d\}\}$. In this topology the subset $\{a,c,d\}$ is πg-closed, $\pi g\alpha$-closed and πgp-closed but not δsg^*-closed.

Remark 2.2.56 The following diagram depicts the independence of δsg^*-closed set between various g-closed sets (In this diagram, $A \iff B$ represents A and B are independent).
2.3 Properties of δsg^*-Closed Sets in Topological Spaces

Theorem 2.3.1
(a) Every finite union of δsg^*-closed sets may fail to be a δsg^*-closed set.

(b) Every finite intersection of δsg^*-closed sets may fail to be a δsg^*-closed set.

The following examples support the above theorem.

Example 2.3.2 Let $X = \{a,b,c\}$, $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}$. Consider $A = \{a\}$ and $B = \{b\}$ then A and B are δsg^*-closed sets but $A \cup B = \{a,b\}$ is not a δsg^*-closed set in (X, τ).

Example 2.3.3 Let $X = \{a,b,c,d\}$, $\tau = \{X,\phi,\{c\},\{a,b\},\{a,b,c\}\}$. Consider $A = \{a,b\}$ and $B = \{a,d\}$ then A and B are δsg^*-closed sets but $A \cap B = \{a\}$ is not a δsg^*-closed set in (X, τ).

Theorem 2.3.4 Let A be a δsg^*-closed set of (X, τ). Then δ-scl(A) \ A does not contain a non-empty g-closed set.

Proof: Suppose that A is δsg^*-closed, let F be a g-closed set contained in δ-scl(A) \ A. Now $X \setminus F$ is a g-open set in (X, τ) such that $A \subseteq X \setminus F$. Since A is a δsg^*-closed set of (X, τ), δ-scl(A) \ $X \setminus F$. Thus $F \subseteq X \setminus \delta$-scl($A$). Also $F \subseteq \delta$-scl(A) \ A. Therefore $F \subseteq X \setminus \delta$-scl($A$) \ $F \subseteq \delta$-scl(A) \ A. Therefore $F = \phi$. Hence $F = \phi$.

53
Proposition 2.3.5 If \(A \) is a \(g \)-open set and a \(\delta g^* \)-closed set of \((X, \tau)\) then \(A \) is a \(\delta \)-semi closed set of \((X, \tau)\).

Proof: Since \(A \) is \(g \)-open and \(\delta g^* \)-closed. Let \(A \subseteq A \), where \(A \) is \(g \)-open and \(\delta \text{-scl}(A) \subseteq A \) which implies \(\delta \text{-scl}(A) = A \). Hence \(A \) is \(\delta \)-semi closed.

Corollary 2.3.6 If \(A \) is \(\delta g^* \)-closed, \(g \)-open and \(F \) is \(\delta \)-semi closed in \((X, \tau)\), then \(A \cap F \) is \(\delta \)-semi closed.

Proof: Since \(A \) is \(\delta g^* \)-closed and \(g \)-open, \(A \) is \(\delta \)-semi closed by Proposition 2.3.5. Since \(F \) is \(\delta \)-semi closed in \((X, \tau)\). Therefore \(A \cap F \) is \(\delta \)-semi closed in \((X, \tau)\) [By Lemma 1 (Caldas, 2003)].

Remark 2.3.7 The intersection of a \(\delta \)-semi closed set and a \(\delta g^* \)-closed set is not \(\delta g^* \)-closed. It is seen from the following example.

Example 2.3.8 Let \(X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\} \). Then \(\{a, b\} \) is \(\delta \)-semi closed and \(\{b, d\} \) is \(\delta g^* \)-closed but \(\{a, b\} \cap \{b, d\} = \{b\} \) is not a \(\delta g^* \)-closed set in \((X, \tau)\).

Proposition 2.3.9 If \(A \) is a \(\delta g^* \)-closed set in a space \((X, \tau)\) and \(A \subseteq B \subseteq \delta \text{-scl}(A) \), then \(B \) is also a \(\delta g^* \)-closed set.

Proof: Let \(U \) be a \(g \)-open set of \((X, \tau)\) such that \(B \subseteq U \) then \(A \subseteq U \). Since \(A \) is a \(\delta g^* \)-closed set, \(\delta \text{-scl}(A) \subseteq U \). Also since \(B \subseteq \delta \text{-scl}(A) \), \(\delta \text{-scl}(B) \subseteq \delta \text{-scl}(\delta \text{-scl}(A)) = \delta \text{-scl}(A) \). Hence \(\delta \text{-scl}(B) \subseteq U \). Therefore \(B \) is also a \(\delta g^* \)-closed set.

Theorem 2.3.10 Let \(A \) be a \(\delta g^* \)-closed set of \((X, \tau)\). Then \(A \) is \(\delta \)-semi closed if and only if \(\delta \text{-scl}(A) \setminus A \) is \(g \)-closed.

Proof: **Necessity:** Let \(A \) be a \(\delta \)-semi closed subset of \((X, \tau)\). Then \(\delta \text{-scl}(A) = A \) and so \(\delta \text{-scl}(A) \setminus A = \phi \), which is \(g \)-closed.

Sufficiency: Let \(\delta \text{-scl}(A) \setminus A \) be \(g \)-closed. Since \(A \) is \(\delta g^* \)-closed, by Theorem 2.3.4., \(\delta \text{-scl}(A) \setminus A \) does not contain a non-empty \(g \)-closed set which implies \(\delta \text{-scl}(A) \setminus A = \phi \). That is \(\delta \text{-scl}(A) = A \). Hence \(A \) is \(\delta \)-semi closed.
Definition 2.3.11 Let $B \subseteq A \subseteq X$. Then B is δsg^*-closed relative to A if $(\delta-scl)_A(B) \subseteq U$, whenever $B \subseteq U$, U is g-open in A.

Theorem 2.3.12 Let $B \subseteq A \subseteq X$ and suppose that B is δsg^*-closed in (X, τ), then B is δsg^*-closed relative to A. The converse is true if A is δ-semi closed in (X, τ).

Proof: Suppose that B is δsg^*-closed in (X, τ). Let $B \subseteq U$, U is g-open in A. Since U is g-open in A, $U = V \cap A$, where V is g-open in (X, τ). Hence $B \subseteq U \subseteq V$. Since B is δsg^*-closed in (X, τ), $\delta-scl(B) \subseteq V$. Hence $\delta-scl(B) \cap A \subseteq V \cap A$ which in turn implies that $(\delta-scl)_A(B) \subseteq V \cap A = U$. Therefore B is δsg^*-closed relative to A.

Now, to prove the converse, assume that $B \subseteq A \subseteq X$ where A is δ-semi closed in (X, τ) and B is δsg^*-closed relative to A. Let $B \subseteq U$, U is g-open in (X, τ). Then $A \cap U$ is g-open in A. Since $B \subseteq A$ and $B \subseteq U$, $B \subseteq A \cap U$.

Since B is δsg^*-closed relative to A, $(\delta-scl)_A(B) \subseteq A \cap U$ \hspace{1cm} (1)

Since A is δ-semi closed in (X, τ), $\delta-scl(A) = A$.

Since $\delta-scl(B) \subseteq \delta-scl(A)$. Hence $\delta-scl(B) \subseteq A$.

Therefore $\delta-scl(B) \cap A = \delta-scl(B) \Rightarrow (\delta-scl)_A(B) = \delta-scl(B)$ \hspace{1cm} (2)

(1) and (2) implies $\delta-scl(B) \subseteq A \cap U \subseteq U$.

Therefore B is δsg^*-closed in (X, τ).

Theorem 2.3.13 Let A be a subset of a $T_{1/2}$-space (X, τ) then

(a) A is δsg^*-closed if and only if A is $g\delta s$-closed.

(b) If in addition, (X, τ) is semi regular then A is δsg^*-closed if and only if A is gs-closed.

(c) If in addition, (X, τ) is T_b (resp. T_d) A is δsg^*-closed if and only if A is closed (resp. g-closed).

Proof: (a) In general δsg^*-closed is $g\delta s$-closed by Theorem 2.2.10. Conversely Let A be a $g\delta s$-closed set. Let $A \subseteq U$, where U is g-open. In a $T_{1/2}$-space, g-open sets coincide with open sets. Since A is a $g\delta s$-closed set, $\delta-scl(A) \subseteq U$. Therefore A is a δsg^*-closed set.
Chapter 2

(b) Every δsg^*-closed is gs-closed from Theorem 2.2.17. Conversely let A be gs-closed. Let $A \subseteq U$ where U is g-open. In a $T_{1/2}$-space, every g-open set is open and since A is gs-closed, $scl(A) \subseteq U$. In a semi regular space, $\tau = \tau_\delta$ then $\delta scl(A) = scl(A) \subseteq U$. Hence A is δsg^*-closed.

(c) The proof follows from Theorem 2.8 of (Park, 2007) and from (a).

Definition 2.3.14 A partition space (Nieminen, 1977) is a space where every open set is closed.

Remark 2.3.15 In a partition space, open sets coincide with δ-open sets and the concepts of δ-closure and δ-semi closure coincide for any set.

Theorem 2.3.16 For a subset A of a $T_{1/2}$ partition space (X, τ) the following are equivalent:

(a) A is δsg^*-closed
(b) A is δg-closed
(c) A is δg^+-closed
(d) A is gd_δ-closed
(e) A is $\delta g s$-closed

Proof: (b) \iff (c) \iff (d) \iff (e) is proved in [Theorem 2.6 of (Park, 2007)]

(a) \iff (b) In a $T_{1/2}$-space, g-open sets coincide with open sets and hence by Remark 2.3.15 the proof follows.

The previous observation leads to the problem of finding the spaces (X, τ) in which the gs-closed sets of (X, τ_δ) are $g\delta s$-closed in (X, τ). While we have not been able to completely resolve this problem, we offer partial solutions. For that reason we will call the spaces with semi-$T_{1/2}$ semi-regularization semi-weakly Hausdorff. Recall that a space is called almost weakly Hausdorff (Dontchev, 1996) if its semi-regularization is $T_{1/2}$. Clearly almost weakly Hausdorff spaces are semi-weakly Hausdorff, but conversely.

Example 2.3.17 (Park, 2007) Let $X = \{a,b,c,d\}$ with $\tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}$. Then (X, τ) is clearly semi-weakly Hausdorff but not almost weakly Hausdorff.

Remark 2.3.18 In a semi weakly Hausdorff space, every singleton is either δ-semi open or δ-semi closed.
Theorem 2.3.19 For a subset A of a semi-weakly Hausdorff space (X, τ) the following are equivalent:

(a) A is gs-closed in (X, τ),
(b) A is δ-semi closed in (X, τ),
(c) A is δsg*-closed in (X, τ).

Proof: (a) ⇒ (b) Let A ⊆ X be gs-closed subset (X, τ). Let x ∈ δ-scl(A)

Case 1: {x} is δ-semi open. Since x ∈ δ-scl(A), every δ-semi neighborhood intersects A. Here {x} is a δ-semi neighborhood and hence {x} ∩ A ≠ ∅ which implies x ∈ A.

Case 2: {x} is not δ-semi open. Then {x} is δ-semi closed. By Remark 2.3.18, X \ {x} is δ-semi open.

Assume that x ∉ A. Since A is gs-closed in (X, τ), then δ-scl(A) ⊆ X \ {x}, i.e. x ∉ δ-scl(A). This is a contradiction to our assumption x ∈ δ-scl(A). Hence x ∈ A. Thus δ-scl(A) = A or equivalently A is δ-semi closed in (X, τ).

(b) ⇒ (c) By Proposition 2.2.2.

(c) ⇒ (a) Let A ⊆ U, where U is open in (X, τ). Then U is δ-open in (X, τ). Every δ-open is g-open. Since A is δsg*-closed in (X, τ), δ-scl(A) ⊆ U. By Lemma 7.3 of (Noiri, 2004), δ-scl(A) = scl(A) in (X, τ). That is scl(A) ⊆ U. Thus A is gs-closed in (X, τ).

Theorem 2.3.20 For a space (X, τ) the following are equivalent:

(a) Every g-open set of X is a δ-semi closed set
(b) Every subset of X is a δsg*-closed set.

Proof: (a) ⇒ (b) Let A ⊆ X such that A ⊆ U, where U is g-open. By (a), U is δ-semi closed and thus δ-scl(U) = U. Hence A is δsg*-closed set.

(b) ⇒ (a) Let U be a g-open set of (X, τ) and U ⊆ U, then by (b) δ-scl(U) ⊆ U or equivalently U is δ-semi closed.

Definition 2.3.21 A topological space (X, τ) is called an R_1-space if every two different points with distinct closures have disjoint neighborhoods.

Remark 2.3.22 In R_1-spaces the concepts of closure and δ-closure coincide for compact sets [Theorem 3.6 in (Jankovic, 1980)].
Chapter 2

Theorem 2.3.23 For a compact subset A of an R_1-topological space (X, τ) the following conditions are equivalent, when (X, τ) is also $T_{1/2}$.

(a) A is a δsg^*-closed set

(b) A is a gs-closed set

Proof: (a) \implies (b) By Theorem 2.2.17.

(b) \implies (a) Let $A \subseteq U$, where U is g-open. In a $T_{1/2}$-space g-open sets coincide with open sets. By Remark 2.3.2, the rest of the proof is obvious.

Corollary 2.3.24 In Hausdorff spaces, a finite set is gs-closed if and only if it is δsg^*-closed.

2.4 δsg^*-Open Sets

In this section we introduce the concept of δsg^*-open sets in topological spaces and study some of their properties. It is interesting to note some extensions related δsg^*-closed sets don’t hold good for δsg^*-closed sets since δ-semi closed \iff g-closed. The singletons are characterized through δsg^*-open sets here.

Definition 2.4.1 A subset A of a topological space (X, τ) is called δsg^*-open if its complement $X \setminus A$ is δsg^*-closed in (X, τ). The collection of all δsg^*-open sets in (X, τ) is denoted by $\delta SG^*O(X, \tau)$.

Theorem 2.4.2 If a subset A of a topological space (X, τ) is δ-semi open, then it is δsg^*-open in (X, τ).

Proof: Let A be a δ-semi open set in topological space (X, τ). Then A^c is δ-semi closed in (X, τ). By Proposition 2.2.2, A^c is δsg^*-closed in (X, τ). Hence A is δsg^*-open in (X, τ).

Remark 2.4.3 The converse of the above theorem need not be true as seen in the following example.

Example 2.4.4 Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a,b\}, \{a,c\}\}$. Then the subset $\{a\}$ is δsg^*-open but not δ-semi open in (X, τ).

A study on δsg^*-Closed Sets in Topological Spaces 58
Proposition 2.4.5 Every clopen set in \((X, \tau)\) is \(\delta\)-sg*-open.

Proof: Let \(A\) be a clopen set. Then \(\text{cl}(A) = A\) and \(\text{int}(A) = A\). Hence \(\text{int}(\text{cl}(A)) = A\). Thus \(A\) is regular open since regular open \(\rightarrow \delta\)-open \(\rightarrow \delta\)-semi open. Therefore \(A\) is \(\delta\)-semi open. By Theorem 2.4.2, we get \(A\) is \(\delta\)-sg*-open.

Remark 2.4.6 A \(\delta\)-sg*-open set is need not be clopen as seen from the following example.

Example 2.4.7 Let \(X = \{a, b, c\}\), \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\). Then the subset \(\{a, b\}\) is \(\delta\)-sg*-open but not clopen.

The following proposition can be proved similar to Theorem 2.4.2.

Proposition 2.4.8 Every \(\delta\)-sg*-open set is gs-open (resp. g\(\delta\)-s-open, \(\delta\)gs-open, gsp-open, gspr-open, \(\pi\)gb-open, \(\pi\)gs-open, \(\pi\)gsp-open)

Lemma 2.4.9 For a subset \(A\) of \((X, \tau)\), \(\delta\)-scl\((X \setminus A) = X \setminus \delta\)-sint\((A)\).

Theorem 2.4.10 A subset \(A\) of a topological space \((X, \tau)\) is \(\delta\)-sg*-open if and only if \(G \subseteq \delta\)-sint\((A)\) whenever \(A \supseteq G\) and \(G\) is g-closed.

Proof: Assume that \(A\) is \(\delta\)-sg*-open. Then \(X \setminus A\) is \(\delta\)-sg*-closed. Let \(G\) be a g-closed set in \((X, \tau)\) contained in \(A\). Then \(X \setminus G\) is g-open set in \((X, \tau)\) containing \(X \setminus A\). Since \(X \setminus A\) is \(\delta\)-sg*-closed, \(\delta\)-scl\((X \setminus A) \subseteq X \setminus G\), equivalently \(G \subseteq \delta\)-sint\((A)\) by Lemma 2.4.9.

Conversely assume that \(G\) is contained in \(\delta\)-sint\((A)\), whenever \(G\) is contained in \(A\) and \(G\) is g-closed in \((X, \tau)\). Let \(X \setminus A\) be contained in \(F\), where \(F\) is g-open. Then \(X \setminus F \subseteq A\). By criteria, \(X \setminus F \subseteq \delta\)-sint\((A)\). This implies \(\delta\)-scl\((X \setminus A) \subseteq F\) by Lemma 2.4.9. Thus \(X \setminus A\) is \(\delta\)-sg*-closed. Hence \(A\) is \(\delta\)-sg*-open.

Proposition 2.4.11 If \(\delta\)-sint\((A) \subseteq B \subseteq A\) and \(A\) is \(\delta\)-sg*-open in \((X, \tau)\), then \(B\) is \(\delta\)-sg*-open in \((X, \tau)\).

Proof: Follows from Lemma 2.4.9 and Proposition 2.3.9.

Theorem 2.4.12 If \(A\) and \(B\) are \(\delta\)-sg*-open sets in \((X, \tau)\), then \(A \cap B\) is \(\delta\)-sg*-open in \((X, \tau)\).
Chapter 2

Proof: Let A and B be δsg^*-open sets in (X, τ). Then $X \setminus A$ and $X \setminus B$ are δsg^*-closed sets and $(X \setminus A) \cup (X \setminus B) = X \setminus (A \cap B)$ is δsg^*-closed. Hence $A \cap B$ is δsg^*-open.

Theorem 2.4.13 If A is δsg^*-open in (X, τ) and F is g-open such that $\delta sint(A) \cup (X \setminus A) \subseteq F$ then $F = X$.

Proof: Let A be a δsg^*-open set and F be g-open and $\delta sint(A) \cup (X \setminus A) \subseteq F$. This gives $X \setminus F \subseteq X \setminus (\delta sint(A) \cup (X \setminus A)) \subseteq (X \setminus \delta sint(A)) \cap A \subseteq (X \setminus \delta sint(A)) \setminus (X \setminus A) \subseteq \delta scl(X \setminus A) \setminus (X \setminus A)$. Since $X \setminus A$ is δsg^*-closed and $X \setminus F$ is g-closed by Theorem 2.3.4, it follows that $X \setminus F = \emptyset$. Therefore $F = X$.

Note 2.4.14 In the case of δg^*-closed sets (Sudha (2014)), the converse part of Theorem 2.4.13 holds good (Theorem 2.4.7 in Ph.D thesis of Sudha). As δ-semi closed \nrightarrow g-closed, the converse part cannot be proved in the above theorem. This can be seen from the following example.

Example 2.4.15 Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Let $A = \{a, c, d\}$, $\delta sint(A) = \{c\} \cup (X \setminus A) = \{b, c\} \subseteq \{a, b, c\} = F \neq X$.

Definition 2.4.16 The intersection of all g-open subsets of (X, τ) containing A is called the g-kernel of A and is denoted by $gker(A)$.

\[i.e., gker(A) = \bigcap \{U / U \text{ is g-open in } (X, \tau) \text{ and } A \subseteq U\}\]

The following theorem characterizes singletons through δsg^*-closed sets.

Theorem 2.4.17 Every singleton is either g-closed or δsg^*-open in (X, τ).

Proof: If $\{a\}$ is g-closed, then there is nothing to prove. Suppose that $\{a\}$ is not g-closed in (X, τ), then $X \setminus \{a\}$ is not g-open and the only g-open set containing $X \setminus \{a\}$ is the space X itself. That is $X \setminus \{a\} \subseteq X$. Therefore $\delta scl(X \setminus \{a\}) \subseteq X$ and $X \setminus \{a\}$ is δsg^*-closed and hence $\{a\}$ is δsg^*-open.

Note 2.4.18 Theorem 2.4.17 gives a decomposition for (X, τ) as $X = X_1 \cup X_2$ where $X_1 = \{x \in X / \{x\} \text{ is g-closed}\}$ and $X_2 = \{x \in X / \{x\} \text{ is } \delta sg^*-open\}$.

Theorem 2.4.19 For a subset A of (X, τ), the following properties are equivalent

(a) A is δsg^*-closed

(b) $\delta scl(A) \subseteq gker(A)$ holds
\(\text{(c) (i) } \delta\text{-scl}(A) \cap X_1 \subseteq A\)

\(\text{(ii) } \delta\text{-scl}(A) \cap X_2 \subseteq g\text{-ker}(A)\)

\textbf{Proof: \(\text{(a)} \Rightarrow \text{(b)}\)} Let \(x \notin g\text{-ker}(A)\). Then there exists a set \(U \in \text{GO}(X, \tau)\) such that \(A \subseteq U\) and \(x \notin U\). Since \(A\) is \(\delta\text{sg}-\text{closed}\), \(\delta\text{-scl}(A)\subseteq U\) and \(x \notin \delta\text{-scl}(A)\).

\(\text{(b) } \Rightarrow \text{(a)}\) Let \(A \subseteq U\), where \(U\) is \(g\)-open. Since \(U\) is \(g\)-open containing \(A\), by definition of \(g\text{-ker}(A)\) we get, \(g\text{-ker}(A) \subseteq U\) \(\rightarrow (1)\)

By \(\text{(b)}\), \(\delta\text{-scl}(A) \subseteq g\text{-ker}(A)\) \(\rightarrow (2)\)

\((1)\) and \((2)\) implies \(\delta\text{-scl}(A) \subseteq U\). Therefore \(A\) is \(\delta\text{sg}-\text{closed}\).

\(\text{(b) } \Rightarrow \text{(c)}\)

\(\text{(i) Let } x \in \delta\text{-scl}(A) \cap X_1\) \(\rightarrow (1)\)

\(x \in \delta\text{-scl}(A)\) then by \(\text{(b)}\), \(x \in g\text{-ker}(A)\) \(\rightarrow (2)\)

\((1) \Rightarrow x \in X_1, \{x\}\) is \(g\)-closed \(\rightarrow (3)\)

If \(x \notin A\) and say \(U = X \setminus \{x\}\) is a \(g\)-open set \(\text{[by (3)]}\) and \(A \subseteq U\) \(\rightarrow (4)\)

That is \(U\) is a \(g\)-open set containing \(A\). By definition of \(g\text{-kernel}\) of \(A\), \(g\text{-ker}(A) \subseteq U\).

\((2) \Rightarrow x \in U\), which is a contradiction to \(U = X \setminus \{x\}\). Therefore \(x \in A\).

\(\text{(ii) Always } \delta\text{-scl}(A) \cap X_2 \subseteq \delta\text{-scl}(A)\) \(\rightarrow (1)\)

\(\text{(b) } \Rightarrow \delta\text{-scl}(A) \subseteq g\text{-ker}(A)\) \(\rightarrow (2)\)

\((1) \& (2) \Rightarrow \delta\text{-scl}(A) \cap X_2 \subseteq g\text{-ker}(A)\)

\(\text{(c) } \Rightarrow \text{(b)}\) \(\delta\text{-scl}(A) = \delta\text{-scl}(A) \cap X\)

\[= \delta\text{-scl}(A) \cap [X_1 \cup X_2]\]

\[= [\delta\text{-scl}(A) \cap X_1] \cup [\delta\text{-scl}(A) \cap X_2]\] [using \((c)\) (i) and (ii)]

\[\subseteq A \cup g\text{-ker}(A).\]

Therefore \(\delta\text{-scl}(A) \subseteq g\text{-ker}(A)\).
Corollary 2.4.20 Let \(P = \{ A \subseteq X / \delta\text{-scl}(A) \cap X_2 \subseteq g\text{-ker}(A) \} \). Then

(a) If \(\bigcap_{i \in I} A_i \in P \) and \(A_i \) is \(\delta\text{sg}^* \)-closed in \((X, \tau)\) for each \(i \), then \(\bigcap_{i \in I} A_i \) is \(\delta\text{sg}^* \)-closed.

(b) If \(P = P(X) \) and \(A_i \) is \(\delta\text{sg}^* \)-closed in \((X, \tau)\) for each \(i \in I \), then \(\bigcap_{i \in I} A_i \) is \(\delta\text{sg}^* \)-closed in \((X, \tau)\).

(c) If \(\delta\text{-scl}(A_i) \cap X_2 \subseteq g\text{-ker}(A_i) \) and \(A_i \) is \(\delta\text{sg}^* \)-closed in \((X, \tau)\) for each \(i \in I \), then \(\bigcap_{i \in I} A_i \) is \(\delta\text{sg}^* \)-closed in \((X, \tau)\).

Proof: (a) By Theorem 2.4.19, \(\delta\text{-scl}(A_i) \cap X_1 \subseteq A_i \) for each \(i \in I \). Then we have \(\delta\text{-scl}\left(\bigcap_{i \in I} A_i \right) \cap X_1 \subseteq \bigcap_{i \in I} A_i \) using assumption and Theorem 2.4.19 (c) \(\bigcap_{i \in I} A_i \) is \(\delta\text{sg}^* \)-closed.

(b) follow from (a)

(c) Let \(\delta\text{-scl}(A_i) \cap X_2 \subseteq g\text{-ker}(A_i) \). Since \(\delta\text{-scl}(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} \delta\text{-scl}(A_i) \), we have \(\delta\text{-scl}(\bigcap_{i \in I} A_i) \cap X_2 = [\bigcap_{i \in I} \delta\text{-scl}(A_i) \cap X_2] \subseteq g\text{-ker}(A_i) = g\text{-ker}(\bigcap_{i \in I} A_i) \). Using assumption and Theorem 2.4.19(c), \(\bigcap_{i \in I} A_i \) is \(\delta\text{sg}^* \)-closed.

Theorem 2.4.21 If a subset \(A \) is \(\delta\text{sg}^* \)-closed in \((X, \tau)\), then \(\delta\text{-scl}(A) \setminus A \) is \(\delta\text{sg}^* \)-open.

Proof: Suppose that \(A \) is \(\delta\text{sg}^* \)-closed in \((X, \tau)\). Let \(F \subseteq \delta\text{-scl}(A) \setminus A \) and \(F \) be \(g \)-closed. Since \(A \) is \(\delta\text{sg}^* \)-closed, \(\delta\text{-scl}(A) \setminus A \) does not contain non-empty \(g \)-closed set (by Theorem 2.3.4) hence \(F = \emptyset \). Thus \(F \subseteq \delta\text{-sint}[\delta\text{-scl}(A) \setminus A] \). Hence \(\delta\text{-scl}(A) \setminus A \) is \(\delta\text{sg}^* \)-open.

2.5 \(\delta\text{sg}^* \) - Closure Operator

In this section, the notion of \(\delta\text{sg}^* \)-closure of a set is introduced and some of its properties are studied. The newly defined \(\delta\text{sg}^* \)-closure operator doesn’t satisfy the axioms of Kuratowski closure operator.

Definition 2.5.1 The \(\delta \) semi generalized star -closure of \(A \) (briefly \(\delta\text{sg}^* \text{cl}(A) \)) of a topological space \((X, \tau)\) is defined as follows.

\[
\delta\text{sg}^* \text{cl}(A) = \cap \{ F \subseteq X : A \subseteq F \text{ and } F \in \delta\text{SG}^* \mathcal{C}(X, \tau) \}
\]
where $\delta^*_SG^*C(X, \tau)$ is set of all δ^*_sg-closed subsets of (X, τ).

Remark 2.5.2 For a subset A of (X, τ), $A \subseteq gs-cl(A) \subseteq \delta^*_sg cl(A) \subseteq \delta-scl(A) \subseteq cl_\delta(A)$.

Proposition 2.5.3 Let A be any subset of (X, τ). If A is δ^*_sg-closed in (X, τ) then $\delta^*_sg cl(A) = A$.

Proof: Let A be δ^*_sg-closed in (X, τ). By definition, $\delta^*_sg cl(A) = \cap \{F \subseteq X : A \subseteq F \text{ and } F \text{ is } \delta^*_sg \text{-closed in } (X, \tau)\}$. Since A is δ^*_sg-closed, F in the above intersection is A and hence $\delta^*_sg cl(A) = A$.

Remark 2.5.4 Let $A \subseteq X$. Then $\delta^*_sg cl(A)$ need not be a δ^*_sg-closed set.

Example 2.5.5 Let $X = \{a,b,c,d\}$, $\tau = \{X, \phi, \{c\}, \{a,b\}, \{a,b,c\}\}$

$$\delta^*_sg cl\{a\} = \cap \{\text{all } \delta^*_sg \text{-closed sets containing } \{a\}\}$$

$$= \{a,b\} \cap \{a,d\} \cap \{a,b,d\} \cap \{a,c,d\} \cap X$$

$$= \{a\} \neq \delta^*_sg \text{-closed set}$$

Theorem 2.5.6 For any two subsets A and B of (X, τ). Then the following statements are true:

(a) $\delta^*_sg cl(X) = X$ and $\delta^*_sg cl(\phi) = \phi$

(b) $A \subseteq \delta^*_sg cl(A)$

(c) If B is any δ^*_sg-closed set containing A, then $\delta^*_sg cl(A) \subseteq B$

(d) If $A \subseteq B$, then $\delta^*_sg cl(A) \subseteq \delta^*_sg cl(B)$

(e) $\delta^*_sg cl(\delta^*_sg cl(A)) = \delta^*_sg cl(A)$

(f) $\delta^*_sg cl(A) \cup \delta^*_sg cl(B) \subseteq \delta^*_sg cl(A \cup B)$. The reverse inclusion is not satisfied shown in Example 2.5.7.

(g) $\delta^*_sg cl(A \cap B) = \delta^*_sg cl(A) \cap \delta^*_sg cl(B)$

Proof: (a) Follows from Definition 2.5.1.

(b) By the definition of δ^*_sg-closure of A, it is obvious that $A \subseteq \delta^*_sg cl(A)$.

A study on δ^*_sg-Closed Sets in Topological Spaces

63
(c) Let B be any δsg*-closed set containing A. Since δsg*cl(A) is the intersection of all δsg*-closed sets containing A, δsg*cl(A) is contained in every δsg*-closed set containing A. Hence δsg*cl(A) ⊆ B.

(d) Follows from Definition 2.5.1.

(e) By (c), δsg*cl(A) ⊆ B. Let A be any subset of X. By the definition of δsg*-closure, δsg*cl(A) = ∩{F ⊆ X / A ⊆ F and F ∈ δSG* cl(X, τ)}. If A ⊆ F ∈ δSG* cl(X, τ), then δsg* cl(A) ⊆ F. Since F is δsg*-closed set containing δsg* cl(A). By (c), δsg* cl(δsg* cl(A)) ⊆ F. Hence δsg* cl(δsg* cl(A)) ⊆ ∩{F ⊆ X : A ⊆ F and F ∈ δSG* cl(X, τ)} = δsg* cl(A). That is δsg* cl(δsg* cl(A)) = δsg* cl(A).

(f) Since A ⊆ A∪B and B ⊆ A∪B, by (b), δsg* cl(A) ⊆ δsg* cl(A∪B) and δsg* cl(B) ⊆ δsg* cl(A∪B). Hence δsg* cl(A)∪ δsg* cl(B) ⊆ δsg* cl(A∪B).

(g) Since A∩B ⊆ A and A∩B ⊆ B, by (b), δsg* cl(A∩B) ⊆ δsg* cl(A) and δsg* cl(A∩B) ⊆ δsg* cl(B). Hence δsg* cl(A∩B) ⊆ δsg* cl(A)∩ δsg* cl(B). Conversely, δsg* cl(A)∩ δsg* cl(B) = [∩{F ⊆ X : A ⊆ F and F ∈ δSG* cl(X, τ)}]∩ [∩{F ⊆ X : B ⊆ F and F ∈ δSG* cl(X, τ)}] ⊆ ∩{F ⊆ X : A∩B ⊆ F and F ∈ δSG* cl(X, τ)} = δsg* cl(A∩B).

Example 2.5.7 Let X = {a,b,c,d}, τ = {X,ϕ ,{c},{a,b},{a,b,c}}. Let A = {a,b}, B = {c} and A∪B = {a,b,c} then δsg* cl{a,b} = {a,b}, δsg* cl{c} = {c} and δsg* cl{a,b,c} = X. Hence δsg* cl(A∪B) = X ⊈ δsg* cl(A)∪ δsg* cl(B).

Note 2.5.8 δsg*-closure operator is not a Kuratowski closure operator since it is not satisfying

(i) δsg* cl(A)∪ δsg* cl(B) = δsg* cl(A∪B).

Remark 2.5.9 Denote the set of δ-semi open sets as τδs.

Definition 2.5.10 Let U be any subset of (X, τ). Using δsg*-closure operator, a new class of sets denoted by δsg* τ# is defined as follows.

δsg* τ# = {U : δsg* cl(X \ U) = X \ U}

Proposition 2.5.11 For any topology τ, we have τδs ⊆ τδs ⊆ δsg* τ#.
Chapter 2

Proof: Obvious from Remark 2.5.2 and Definition 2.5.10.

Lemma 2.5.12 For any $A \subseteq X$, $A \subseteq \deltasg^*\text{cl}(A) \subseteq \text{cl}_\delta(A)$.

Proof: It follows from Theorem 2.2.6.

Theorem 2.5.13 Every δsg^*-closed set is δ-semi closed in (X, τ) if and only if $\deltasg^*\tau'' = \tau_\delta$.

Proof: Necessity: Let every δsg^*-closed set is δ-semi closed in (X, τ). We know that every δsg^*-open set is a δ-semi open set $\Rightarrow \deltasg^*\tau'' \subseteq \tau_\delta$. In Proposition 2.5.11, $\tau_\delta \subseteq \deltasg^*\tau''$. Therefore $\deltasg^*\tau'' = \tau_\delta$.

Sufficiency: Let $\deltasg^*\tau'' = \tau_\delta$. Let A be a δsg^*-closed set, $X \setminus A$ is δsg^*-open. Then $\deltasg^*\text{cl}(A) = A$. Therefore $X \setminus \deltasg^*\text{cl}(A) = X \setminus A \in \deltasg^*\tau''$. Since $\deltasg^*\tau'' = \tau_\delta$, then $X \setminus A \in \tau_\delta$. Hence A is δ-semi closed.

Corollary 2.5.14 Every δsg^*-closed set is δ-closed in (X, τ) if and only if $\deltasg^*\tau'' = \tau_\delta$.

Corollary 2.5.15 Every δsg^*-closed set is closed in a semi-regular space if and only if $\deltasg^*\tau'' = \tau_\delta$.

Theorem 2.5.16 For a point $x \in X$, $x \in \deltasg^*\text{cl}(A)$ if and only if $U \cap A \neq \emptyset$ for every δsg^*-open set U in (X, τ) containing x.

Proof: Necessity: Let $x \in \deltasg^*\text{cl}(A)$. Suppose that there exists a δsg^*-open set U in (X, τ) containing x such that $U \cap A = \emptyset$. Hence $X \setminus U$ is δsg^*-closed in (X, τ) containing A, which implies that $\deltasg^*\text{cl}(A) \subseteq X \setminus U$. Hence $x \notin \deltasg^*\text{cl}(A)$, which is a contradiction. Hence $U \cap A \neq \emptyset$.

Sufficiency: Let us assume that $U \cap A \neq \emptyset$ for every δsg^*-open set U in (X, τ) containing x. Suppose that $x \notin \deltasg^*\text{cl}(A)$. By definition of δsg^*-closure, there exists a δsg^*-open set in (X, τ) containing A such that $x \notin U$. Hence $X \setminus U$ is δsg^*-open in (X, τ) containing x. Since $A \subseteq U$, we have $(X \setminus U) \cap A = \emptyset$, which is a contradiction. Hence $x \in \deltasg^*\text{cl}(A)$.

Theorem 2.5.17 Let A be any subset of (X, τ). Then

(a) $(\deltasg^*\text{int}(A))^c = \deltasg^*\text{cl}(A^c)$

(b) $\deltasg^*\text{int}(A) = (\deltasg^*\text{cl}(A^c))^c$
Chapter 2

66

A study on δsg*-Closed Sets in Topological Spaces

(c) δsg* cl(A) = (δsg* int(A c)) c

Proof: Let x ∈ (δsg* int(A)) c. Then x ∉ δsg* int(A). That is every δsg*-open set U containing x is such that U ∉ A. That is every δsg*-open set U containing x is such that U ∩ A c ≠ φ. By Theorem 2.5.16, x ∈ δsg* cl(A c) and therefore (δsg* int(A)) c ⊆ δsg* cl(A c).

Conversely, Let x ∈ δsg* cl(A c). Then by Theorem 2.5.16, every δsg*-open set U containing x is such that U ∩ A c ≠ φ. x ∉ δsg* int(A). That is every δsg*-open set U containing x is such that U ∉ A. By definition of δsg*-interior of A, x ∉ (δsg* int(A)) c and δsg* cl(A c) ⊆ (δsg* int(A)) c. Hence (δsg* int(A)) c = δsg* cl(A c).

(b) Follows by taking complements in (a).

(c) Follows by replacing A by A c in (a).

2.6 δsg* - Interior Operator

In this section, the notion of δsg*-interior of a set is introduced and some of its properties are studied.

Definition 2.6.1 Let (X, τ) be a topological space and let x ∈ X. A subset N of X is said to be δsg*-neighbourhood of x if there exists a δsg*-open set G such that x ∈ G ⊆ N.

Definition 2.6.2 Let A be a subset of X. A point x ∈ A is said to be δsg*-interior point of A if A is a δsg*-neighbourhood of x. The set of all δsg*-interior points of A is called the δsg*-interior of A and is denoted by δsg* int(A).

Theorem 2.6.3 If A be a subset of X, then δsg* int(A) = ∪ {G ⊆ X : G ⊆ A and G ∈ δSG* O(X, τ)}.

Proof: Let A be a subset of X.

x ∈ δsg* int(A) ⇔ x is a δsg*-interior point of A.

⇔ A is a δsg*-neighbourhood of x.

⇔ there exists a δsg*-open set G such that x ∈ G ⊆ A.

⇔ x ∈ ∪ {G ⊆ X : G ⊆ A and G ∈ δSG* O(X, τ)}
Hence $\delta_{sg}^* \text{int}(A) = \bigcup \{G \subseteq X : G \subseteq A \text{ and } G \in \delta_{SG}^* \text{O}(X, \tau)\}$

Theorem 2.6.4 If A is a subset of X, then $\delta_{-sint}(A) \subseteq \delta_{sg}^* \text{int}(A)$.

Proof: Let A be a subset of X.

$$x \in \delta_{-sint}(A) \implies x \in \bigcup \{G \subseteq X : G \text{ is } \delta\text{-semi open}, G \subseteq A\}.$$

\implies there exists a δ-semi open set G such that $x \in G \subseteq A$.

\implies there exists a δ_{sg}^*-open set G such that $x \in G \subseteq A$, as every δ-semi open set is a δ_{sg}^*-open set in X.

$\implies x \in \bigcup \{G \subseteq X : G \text{ is } \delta_{sg}^*\text{-open}, G \subseteq A\}$

$\implies x \in \delta_{sg}^* \text{int}(A)$

Thus $x \in \delta_{-sint}(A) \implies x \in \delta_{sg}^* \text{int}(A)$. Hence $\delta_{-sint}(A) \subseteq \delta_{sg}^* \text{int}(A)$.

Example 2.6.5 Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. Let $A = \{a\}$ then $\delta_{-sint}(A) = \phi$ and $\delta_{sg}^* \text{int}(A) = \{a\}$. Hence $\delta_{-sint}(A) \not= \delta_{sg}^* \text{int}(A)$.

Theorem 2.6.6 If A is a subset of X, then $\delta_{sg}^* \text{int}(A) \subseteq \text{gs-int}(A)$, where $\text{gs-int}(A)$ is given by $\text{gs-int}(A) = \bigcup \{G \subseteq X : G \subseteq A \text{ and } G \in \text{GSO}(X, \tau)\}$.

Proof: Let A be a subset of X.

$$x \in \delta_{sg}^* \text{int}(A) \implies x \in \bigcup \{G \subseteq X : G \text{ is } \delta_{sg}^*\text{-open}, G \subseteq A\}.$$

\implies there exists a δ_{sg}^*-open set G such that $x \in G \subseteq A$.

\implies there exists a gs-open set G such that $x \in G \subseteq A$, as every δ_{sg}^*-open set is a gs-open set in X.

$\implies x \in \bigcup \{G \subseteq X : G \text{ is } \text{gs}\text{-open}, G \subseteq A\}$

$\implies x \in \text{gs-int}(A)$

Thus $x \in \delta_{sg}^* \text{int}(A) \implies x \in \text{gs-int}(A)$. Hence $\delta_{sg}^* \text{int}(A) \subseteq \text{gs-int}(A)$.

Example 2.6.7 Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a, b\}\}$. Let $A = \{b, c\}$ then $\text{gs-int}(A) = \{b, c\}$ and $\delta_{sg}^* \text{int}(A) = \{b\}$. Hence $\text{gs-int}(A) \not= \delta_{sg}^* \text{int}(A)$.
Remark 2.6.8 For a subset A of (X, τ), \(\text{int}_\delta(A) \subseteq \delta\text{-sint}(A) \subseteq \delta^*\text{int}(A) \subseteq \text{gs-int}(A) \subseteq A \).

Theorem 2.6.9 For any two subsets A and B of (X, τ), the following statements are true:

(a) \(\delta^*\text{int}(X) = X \) and \(\delta^*\text{int}(\emptyset) = \emptyset \)

(b) \(\delta^*\text{int}(A) \subseteq A \)

(c) If B is any \(\delta^* \)-open set contained in A, then B \(\subseteq \delta^*\text{int}(A) \)

(d) If A \(\subseteq B \), then \(\delta^*\text{int}(A) \subseteq \delta^*\text{int}(B) \)

Proof: (a) Since X and \(\emptyset \) are \(\delta^* \)-open sets,

\[
\delta^*\text{int}(X) = \cup \{G : G \subseteq X \text{ and } G \in \delta^*\text{O}(X, \tau)\}
\]

\[
= X \cup \{\text{all } \delta^*\text{-open sets}\}
\]

\[
= X
\]

Similarly since \(\emptyset \) is the only \(\delta^* \)-open set contained in \(\emptyset \), \(\delta^*\text{int}(\emptyset) = \emptyset \).

(b) Let x is a \(\delta^* \)-interior point of A.

Let \(x \in \delta^*\text{int}(A) \Rightarrow x \text{ is a } \delta^* \text{-interior point of A} \Rightarrow A \text{ is a } \delta^* \text{-neighbourhood of } x \Rightarrow x \in A \)

Thus, \(x \in \delta^*\text{int}(A) \Rightarrow x \in A \). Hence \(\delta^*\text{int}(A) \subseteq A \).

(c) Let B be any \(\delta^* \)-open set such that B \(\subseteq A \). Let \(x \in B \). Since B is a \(\delta^* \)-open set contained in A, \(x \) is a \(\delta^* \)-interior point of A. That is \(x \in \delta^*\text{int}(A) \). Hence B \(\subseteq \delta^*\text{int}(A) \).

(d) Let A and B be subsets of X such that A \(\subseteq B \). Let \(x \in \delta^*\text{int}(A) \). Then \(x \) is a \(\delta^* \)-interior point of A and so A is a \(\delta^* \)-neighbourhood of \(x \). Since \(B \supseteq A \), B is also \(\delta^* \)-neighbourhood of \(x \) then \(x \in \delta^*\text{int}(B) \). Hence \(\delta^*\text{int}(A) \subseteq \delta^*\text{int}(B) \).

Proposition 2.6.10 Let A be any subset of (X, τ). If A is \(\delta^* \)-open in (X, τ) then \(\delta^*\text{int}(A) = A \).
Chapter 2

Proof: Let A be $\delta^*\text{sg}$-open in (X, τ). We know that $\delta^*\text{sg}\text{int}(A) \subseteq A$. Also A is a $\delta^*\text{sg}$-open set contained in A. From above Theorem 2.6.9 (c), $A \subseteq \delta^*\text{sg}\text{int}(A)$. Hence $\delta^*\text{sg}\text{int}(A) = A$.

Corollary 2.6.11 $\delta^*\text{sg}\text{int}(\delta^*\text{sg}\text{int}(A)) = \delta^*\text{sg}\text{int}(A)$

Proof: By (b) and (d) of Theorem 2.6.9, $\delta^*\text{sg}\text{int}(\delta^*\text{sg}\text{int}(A)) \subseteq \delta^*\text{sg}\text{int}(A)$.

The reverse inclusion follows from Proposition 2.6.10.

Example 2.6.12 Converse of Proposition 2.6.10 need not be true. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{c\}, \{a,b\}, \{a,b,c\}\}$

$\delta^*\text{sg}\text{int}\{b,c,d\} = \bigcup \{\text{all } \delta^*\text{sg}\text{-open sets contained in } \{b,c,d\}\}$

$= \{b\} \cup \{c\} \cup \{b,c\} \cup \{c,d\} \cup \phi$

$= \{b,c,d\}$

But $\{b,c,d\}$ is not a $\delta^*\text{sg}$-open set in (X, τ).

Theorem 2.6.13 If A and B are subsets of X, then $\delta^*\text{sg}\text{int}(A) \cup \delta^*\text{sg}\text{int}(B) \subseteq \delta^*\text{sg}\text{int}(A \cup B)$.

Proof: Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, by Theorem 2.6.9 (d), $\delta^*\text{sg}\text{int}(A) \subseteq \delta^*\text{sg}\text{int}(A \cup B)$ and $\delta^*\text{sg}\text{int}(B) \subseteq \delta^*\text{sg}\text{int}(A \cup B)$. Hence $\delta^*\text{sg}\text{int}(A) \cup \delta^*\text{sg}\text{int}(B) \subseteq \delta^*\text{sg}\text{int}(A \cup B)$.

Example 2.6.14 Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{c\}, \{a,b\}, \{a,b,c\}\}$. Let $A = \{a\}$, $B = \{b,d\}$ and $A \cup B = \{a,b,d\}$ then $\delta^*\text{sg}\text{int}\{a\} = \{a\}$, $\delta^*\text{sg}\text{int}\{b,d\} = \{b\}$ and $\delta^*\text{sg}\text{int}\{a,b,d\} = \{a,b,d\}$. Hence $\delta^*\text{sg}\text{int}(A \cup B) = \{a,b,d\} \not\subseteq \delta^*\text{sg}\text{int}\{a\} \cup \delta^*\text{sg}\text{int}\{b\} = \{a,b\}$.

Note 2.6.15 $\delta^*\text{sg}$-interior operator is not a Kuratowski interior operator since it is not satisfying

(i) $\delta^*\text{sg}\text{int}(A) \cup \delta^*\text{sg}\text{int}(B) = \delta^*\text{sg}\text{int}(A \cup B)$.

Remark 2.6.16 As union of $\delta^*\text{sg}$-open sets is not a $\delta^*\text{sg}$-open set, $\delta^*\text{sg}\text{int}(A)$ need not be the largest $\delta^*\text{sg}$-open set contained in A as seen in the following example.

Example 2.6.17 Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{c\}, \{a,b\}, \{a,b,c\}\}$

$\delta^*\text{sg}\text{int}\{a,c,d\} = \bigcup \{\text{all } \delta^*\text{sg}\text{-open sets contained in } \{a,c,d\}\}$
Chapter 2

\[= \{a\} \cup \{c\} \cup \{a,c\} \cup \{c,d\} \]

\[= \{a,c,d\} \]

But \(\{a,c\}\) is the largest open set contained in \(\{a,c,d\}\).

Theorem 2.6.18 If \(A\) and \(B\) are subsets of \(X\), then \(\delta_{sg}^* \text{int}(A \cap B) \subseteq \delta_{sg}^* \text{int}(A) \cap \delta_{sg}^* \text{int}(B)\).

Proof: Since \(A \cap B \subseteq A\) and \(A \cap B \subseteq B\), by Theorem 2.6.9 (d), \(\delta_{sg}^* \text{int}(A \cap B) \subseteq \delta_{sg}^* \text{int}(A)\) and \(\delta_{sg}^* \text{int}(A \cap B) \subseteq \delta_{sg}^* \text{int}(B)\). Hence \(\delta_{sg}^* \text{int}(A \cap B) \subseteq \delta_{sg}^* \text{int}(A) \cap \delta_{sg}^* \text{int}(B)\).

Example 2.6.19 Let \(X = \{a, b, c, d\}\), \(\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\}\). Let \(\delta_{sg}^* \text{int}\{a,c,d\} = \{a,c,d\}\), \(\delta_{sg}^* \text{int}\{b,c,d\} = \{b,c,d\}\) but \(\delta_{sg}^* \text{int}(A \cap B) = \delta_{sg}^* \text{int}\{c,d\} = \phi\). Hence \(\delta_{sg}^* \text{int}(A) \cap \delta_{sg}^* \text{int}(B) \not\subseteq \delta_{sg}^* \text{int}(A \cap B)\).