δsg*-Homeomorphisms in Topological Spaces

6.1 Introduction

If A and B are subsets of Euclidean space then a homeomorphism from A to B is a bijection function $f : A \to B$ such that both f and its inverse functions are continuous. When such a function exists, A and B are said to be homeomorphic to each other. A property of an object which is invariant under homeomorphism is said to be topological in character. The concept of generalized homeomorphisms and gc-homeomorphisms were introduced by Maki (1991). The class of gc-homeomorphisms is properly placed between the classes of homeomorphisms and g-homeomorphisms. In this chapter, two new classes of functions called δsg*-homeomorphisms and δsg*-C-homeomorphisms are introduced. The interrelationships of these newly introduced functions with various functions are analysed and the dependence links are depicted. Furthermore δsg*-compactness and connectedness are discussed in this chapter. The composition of two δsg*-C-homeomorphisms is a δsg*-C-homeomorphism. The collection δsg*-C(A(X, τ)) of δsg*-C-homeomorphisms is a group under the composition of functions. The δsg*-C-homeomorphism $f : (X, τ) \to (Y, σ)$ induces an isomorphism from the group δsg*-C(A(X, τ)) onto the group δsg*-C(A(X, τ)).

6.2 δsg*-Closed Functions

Definition 6.2.1 A function $f : (X, τ) \to (Y, σ)$ is called a δsg*-closed function if the image of each closed set in $(X, τ)$ is δsg*-closed in $(Y, σ)$.

Example 6.2.2 Let $X = Y = \{a, b, c\}$ with $τ = \{X, φ, \{a\}, \{b,c\}\}$ and $σ = \{Y, φ, \{a\}, \{b\}, \{a,b\}\}$. Let $f : (X, τ) \to (Y, σ)$ be the function defined by $f(a) = c$, $f(b) = a$, $f(c) = c$. Then f is δsg*-closed function.

Remark 6.2.3 δsg*-closedness and δsg*-continuity are independent as shown by the following examples.
Example 6.2.4 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = b$, $f(b) = c$, $f(c) = c$. Then f is δsg^*-closed function but not δsg^*-continuous, since for the closed set $\{b\}$ in (Y, σ), $f^{-1}(\{b\}) = \{a\}$ is not δsg^*-closed in (X, τ).

Example 6.2.5 Let $X = Y = \{a, b, c, d\}$ with $\tau = \{X, \phi, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,c,d\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = c$, $f(b) = d$, $f(c) = a$, $f(d) = b$. Then f is δsg^*-continuous function but not δsg^*-closed, since for the closed set $\{d\}$ in (X, τ), $f\{d\} = \{b\}$ is not δsg^*-closed in (Y, σ).

Proposition 6.2.6 (a) Every δ-closed function is δsg^*-closed but not conversely.

(b) Every δ-semi closed function is δsg^*-closed but not conversely.

Example 6.2.7 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{b\}, \{a,b\}, \{a,c\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = b$, $f(b) = a$, $f(c) = c$. Then f is δsg^*-closed function but not δ-closed (resp. δ-semi closed), since for the closed set $\{c\}$ in (X, τ), $f\{c\} = \{c\}$ is not a δ-closed (resp. δ-semi closed) function in (Y, σ).

Proposition 6.2.8
(a) Every δsg^*-closed function is gs-closed.

(b) Every δsg^*-closed function is δgs-closed.

(c) Every δsg^*-closed function is $g\delta s$-closed.

(d) Every δsg^*-closed function is gsp-closed.

(e) Every δsg^*-closed function is πgs-closed.

(f) Every δsg^*-closed function is πgsp-closed.

Proof: Follows from the fact that every δsg^*-closed set is gs-closed, δgs-closed, $g\delta s$-closed, gsp-closed, πgs-closed and πgsp-closed.

Example 6.2.9 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is gs-closed, δgs-closed, $g\delta s$-closed, gsp-closed, πgs-closed and πgsp-closed functions but not a δsg^*-closed function, since for the closed set $\{c\}$ in (X, τ), $f\{c\} = \{c\}$ is not δsg^*-closed in (Y, σ).
Chapter 6

Remark 6.2.10 The following examples show that δg^*-closed function is independent from δg -closed function and $g\delta$ -closed function.

Example 6.2.11 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b,c\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = c$, $f(b) = a$, $f(c) = b$. Then f is both δg-closed and $g\delta$-closed but not δg^*-closed, since for the closed set $\{b,c\}$ in (X, τ), $f\{b,c\} = \{a,b\}$ is a both δg-closed and $g\delta$-closed set but not δg^*-closed in (Y, σ).

Example 6.2.12 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is δg^*-closed but not δg-closed and $g\delta$-closed, since for the closed set $\{b\}$ in (X, τ), $f\{b\} = \{b\}$ is not δg-closed and $g\delta$-closed but it is δg^*-closed in (Y, σ).

Remark 6.2.13 We have the following diagram

![Diagram of closed functions](image)

6.3 Properties of δg^*-Closed Functions

Theorem 6.3.1 If $f : (X, \tau) \to (Y, \sigma)$ is a δg^*-closed function and A is a closed subset of (X, τ), then $f|_A : (A, \tau|_A) \to (Y, \sigma)$ is a δg^*-closed function.

Proof: Let $B \subseteq A$ be a closed set in $(A, \tau|_A)$. Since A is closed in (X, τ), B is closed in (X, τ). Since f is a δg^*-closed function, $f(B) = (f|_A)(B)$ is δg^*-closed in (Y, σ). Hence $f|_A$ is a δg^*-closed function.
Chapter 6

Theorem 6.3.2 A function \(f: (X, \tau) \rightarrow (Y, \sigma) \) is \(\delta\text{sg}^* \)-closed if and only if for each subset \(G \) of \((Y, \sigma) \) and for each open set \(U \) of \((X, \tau) \) containing \(f^{-1}(G) \), there exists a \(\delta\text{sg}^* \)-open set \(B \) of \((Y, \sigma) \) such that \(G \subseteq B \) and \(f^{-1}(B) \subseteq U \).

Proof: Let \(f \) be a \(\delta\text{sg}^* \)-closed function and let \(G \) be a subset of \((Y, \sigma) \), \(U \) be an open set of \((X, \tau) \) containing \(f^{-1}(G) \). Then \(X \setminus U \) is closed in \((X, \tau) \). Since \(f \) is \(\delta\text{sg}^* \)-closed, \(f(X \setminus U) \) is a \(\delta\text{sg}^* \)-closed set in \((Y, \sigma) \). Hence \(Y \setminus f(X \setminus U) \) is a \(\delta\text{sg}^* \)-open set in \((Y, \sigma) \). Take \(B = Y \setminus f(X \setminus U) \). Then \(B \) is \(\delta\text{sg}^* \)-open in \((Y, \sigma) \) containing \(G \) such that \(f^{-1}(B) \subseteq U \).

Conversely, Let \(F \) be a closed subset of \((X, \tau) \). Then \(f^{-1}(Y \setminus f(F)) \subseteq X \setminus F \) and \(X \setminus F \) is open. By hypothesis, there is a \(\delta\text{sg}^* \)-open set \(B \) of \((Y, \sigma) \) such that \(Y \setminus f(F) \subset B \) and \(f^{-1}(B) \subset X \setminus F \). Therefore \(F \subset X \setminus f^{-1}(B) \). Hence \(Y \setminus B \subset f(F) \subset f(X \setminus f^{-1}(B)) \subset Y \setminus B \), which implies \(f(F) = Y \setminus B \) and hence \(f(F) \) is \(\delta\text{sg}^* \)-closed in \((Y, \sigma) \). Thus \(f \) is a \(\delta\text{sg}^* \)-closed function.

Theorem 6.3.3 A bijection \(f: (X, \tau) \rightarrow (Y, \sigma) \) is a \(\delta\text{sg}^* \)-closed function if and only if \(f(U) \) is \(\delta\text{sg}^* \)-open in \((Y, \sigma) \) for every open set \(U \) in \((X, \tau) \).

Proof: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a \(\delta\text{sg}^* \)-closed function and \(U \) be an open set in \((X, \tau) \). Then \(X \setminus U \) is a closed set in \((X, \tau) \). Since \(f \) is a \(\delta\text{sg}^* \)-closed function, \(f(X \setminus U) \) is a \(\delta\text{sg}^* \)-closed set in \((Y, \sigma) \). Since \(f \) is bijection, \(f(X \setminus U) = X \setminus f(U) \) and hence \(X \setminus f(U) \) is \(\delta\text{sg}^* \)-closed in \((Y, \sigma) \). Hence \(f(U) \) is \(\delta\text{sg}^* \)-open in \((Y, \sigma) \).

Conversely, Let \(U \) be a closed subset of \((X, \tau) \). Then \(X \setminus U \) is an open set in \((X, \tau) \). By the hypothesis, \(f(X \setminus U) \) is \(\delta\text{sg}^* \)-open in \((Y, \sigma) \). Since \(f \) is bijective, \(f(X \setminus U) = X \setminus f(U) \) and hence \(f(U) \) is \(\delta\text{sg}^* \)-closed in \((Y, \sigma) \). Thus \(f \) is a \(\delta\text{sg}^* \)-closed function.

Remark 6.3.4 Bijection of \(f \) is necessary in the above theorem which can be seen in the following example.

Example 6.3.5 Let \(X = Y = \{a, b, c\} \) with \(\tau = \{X, \phi, \{a\}\} \) and \(\sigma = \{Y, \phi, \{a\}, \{a,b\}\} \). Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be defined by \(f(a) = b, f(b) = a, f(c) = a \). Here \(f \) is not bijective. Then for the only open set \(\{a\} \) in \((X, \tau) \), \(f(\{a\}) \) is \(\delta\text{sg}^* \)-open in \((Y, \sigma) \) but \(f \) is not a \(\delta\text{sg}^* \)-closed function as for the closed set \(\{b,c\} \) in \((X, \tau) \), \(f(\{b,c\}) = \{a\} \) is not \(\delta\text{sg}^* \)-closed in \((Y, \sigma) \).
6.4 Composition of $\delta s g^*$-Closed Functions

Remark 6.4.1 The composition of two $\delta s g^*$-closed functions is not a $\delta s g^*$-closed function as shown in the following example.

Example 6.4.2 Let $X = Y = Z = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{a, b\}\}$, $\sigma = \{Y, \phi, \{a, b\}\}$ and $\eta = \{Z, \phi, \{a\}, \{b, c\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be defined by $f(a) = b$, $f(b) = a$, $f(c) = c$ and $g : (Y, \sigma) \rightarrow (Z, \eta)$ be defined by $g(a) = c$, $g(b) = b$, $g(c) = a$. Then f and g are $\delta s g^*$-closed functions but their composition $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is not $\delta s g^*$-closed function, since for the closed set $\{b, c\}$ in (X, τ), $(g \circ f)\{b, c\} = \{a, c\}$ is not $\delta s g^*$-closed in (Z, η).

Theorem 6.4.3 If $f : (X, \tau) \rightarrow (Y, \sigma)$ is a closed function and $g : (Y, \sigma) \rightarrow (Z, \eta)$ is a $\delta s g^*$-closed function then $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is a $\delta s g^*$-closed function.

Proof: Let V be a closed subset of (X, τ). Since f is a closed function, $f(V)$ is closed in (Y, σ). Since g is a $\delta s g^*$-closed function, $g(f(V))$ is $\delta s g^*$-closed in (Z, η). That is, $(g \circ f)(V)$ is $\delta s g^*$-closed in (Z, η). Hence $g \circ f$ is a $\delta s g^*$-closed function.

Remark 6.4.4 If $f : (X, \tau) \rightarrow (Y, \sigma)$ is a $\delta s g^*$-closed function and $g : (Y, \sigma) \rightarrow (Z, \eta)$ is a closed function then their composition need not be a $\delta s g^*$-closed function as seen from the following example.

Example 6.4.5 Let $X = \{a, b, c\} = Y$ with $\tau = \{\phi, X, \{a\}, \{a, b\}\}$, $\sigma = \{\phi, Y, \{a, b\}\}$ and $\eta = \{\phi, Z, \{a\}, \{b, c\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function such that $f(a) = b$, $f(b) = a$, $f(c) = c$. Let $g : (Y, \sigma) \rightarrow (Z, \eta)$ be a function such that $g(a) = c$, $g(b) = b$, $g(c) = a$. Then f is a $\delta s g^*$-closed function and g is a closed function. But their composition function $(g \circ f) : (X, \tau) \rightarrow (Z, \eta)$ is not a $\delta s g^*$-closed function since for the closed set $\{b, c\}$ in (X, τ), $(g \circ f)\{b, c\} = \{a, c\}$ is not $\delta s g^*$-closed in (Z, η).

Proposition 6.4.6 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ and $g : (Y, \sigma) \rightarrow (Z, \eta)$ be $\delta s g^*$-closed functions and (Y, σ) be a $\delta s g^* T_\delta$-space. Then their composition $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is a $\delta s g^*$-closed function.

Proof: Let A be a closed set in (X, τ). Since f is $\delta s g^*$-closed, $f(A)$ is $\delta s g^*$-closed in (Y, σ). Since (Y, σ) is a $\delta s g^* T_\delta$-space, $f(A)$ is δ-closed. Hence $f(A)$ is closed in (Y, σ). Since g is
\(\delta \mathsf{sg}^* \)-closed, \(g(f(A)) = (g \circ f)(A) \) is \(\delta \mathsf{sg}^* \)-closed in \((Z, \eta) \). Hence \(g \circ f \) is a \(\delta \mathsf{sg}^* \)-closed function.

Theorem 6.4.7 Let \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \eta) \) be any two functions:

(a) If \(g \circ f : (X, \tau) \to (Z, \eta) \) is \(\delta \mathsf{sg}^* \)-closed and \(g \) is \(\delta \mathsf{sg}^* \)-irresolute injective then \(f \) is a \(\delta \mathsf{sg}^* \)-closed function.

(b) If \(g \circ f : (X, \tau) \to (Z, \eta) \) is \(\delta \mathsf{sg}^* \)-irresolute and \(g \) is \(\delta \mathsf{sg}^* \)-closed injective then \(f \) is a \(\delta \mathsf{sg}^* \)-continuous function.

Proof: (a) Let \(U \) be a closed set in \((X, \tau) \). Since \(g \circ f \) is \(\delta \mathsf{sg}^* \)-closed, \(g \circ f(U) \) is \(\delta \mathsf{sg}^* \)-closed in \((Z, \eta) \). Therefore \(g(f(U)) \) is \(\delta \mathsf{sg}^* \)-closed in \((Z, \eta) \). Since \(g \) is \(\delta \mathsf{sg}^* \)-irresolute, \(g^{-1}(g(f(U))) \) is \(\delta \mathsf{sg}^* \)-closed in \((Y, \sigma) \). Since \(g \) is injective, \(g^{-1}(g(f(U))) = f(U) \) is \(\delta \mathsf{sg}^* \)-closed in \((Y, \sigma) \). Hence \(f \) is a \(\delta \mathsf{sg}^* \)-closed function.

(b) Let \(V \) be a closed set in \((Y, \sigma) \). Since \(g \) is \(\delta \mathsf{sg}^* \)-closed, \(g(V) \) is \(\delta \mathsf{sg}^* \)-closed in \((Z, \eta) \). Since \(g \circ f \) is \(\delta \mathsf{sg}^* \)-irresolute, \((g \circ f)^{-1}(g(V)) \) is \(\delta \mathsf{sg}^* \)-closed in \((X, \tau) \). Therefore \(f^{-1}(g^{-1}(g(V))) \) is \(\delta \mathsf{sg}^* \)-closed in \((X, \tau) \). Since \(g \) is injective, \(g^{-1}(g(f(U))) = V \) and hence \(f^{-1}(V) \) is \(\delta \mathsf{sg}^* \)-closed in \((X, \tau) \). Therefore \(f \) is a \(\delta \mathsf{sg}^* \)-continuous function.

Theorem 6.4.8 Let \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \eta) \) be any two functions such that their composition \(g \circ f : (X, \tau) \to (Z, \eta) \) is a \(\delta \mathsf{sg}^* \)-closed function. If \(f \) is continuous then \(g \) is a \(\delta \mathsf{sg}^* \)-closed function.

Proof: Let \(V \) be a closed set in \((Y, \sigma) \). Since \(f \) is continuous, \(f^{-1}(V) \) is closed in \((X, \tau) \). Since \(g \circ f \) is \(\delta \mathsf{sg}^* \)-closed, \((g \circ f)^{-1}(g(V)) \) is \(\delta \mathsf{sg}^* \)-closed in \((X, \tau) \). Therefore \(f^{-1}(g^{-1}(g(V))) = f^{-1}(V) \) is \(\delta \mathsf{sg}^* \)-closed in \((X, \tau) \). Hence \(g \) is a \(\delta \mathsf{sg}^* \)-closed function.

Proposition 6.4.9 Let \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \eta) \) be two functions such that their composition \(g \circ f : (X, \tau) \to (Z, \eta) \) is a \(\delta \mathsf{sg}^* \)-closed function. Then the following statements are true.

(a) If \(f \) is a surjective continuous function, then \(g \) is a \(\delta \mathsf{sg}^* \)-closed function.

(b) If \(f \) is a surjective \(g \)-continuous function and \((X, \tau) \) is a \(T_{1/2} \) -space, then \(g \) is a \(\delta \mathsf{sg}^* \)-closed function.

(c) If \(f \) is a quasi \(\delta \mathsf{sg}^* \)-continuous function and injective, then \(f \) is a closed function.
Chapter 6

Proof: (a) Let A be any closed set in (Y, σ). Since f is continuous, f⁻¹(A) is closed in (X, τ). Since g ∘ f is a δsg*-closed function, (g ∘ f)(f⁻¹(A)) is δsg*-closed in (Z, η). Since f is surjective, (g ∘ f)(f⁻¹(A)) = g(A). Hence g(A) is δsg*-closed in (Z, η). Therefore g : (Y, σ) → (Z, η) is a δsg*-closed function.

(b) Let V be any closed set in (Y, σ). Since f is g-continuous, f⁻¹(V) is g-closed in (X, τ). Since (X, τ) is T₁/₂-space, f⁻¹(V) is closed in (X, τ). Since g ∘ f is δsg*-closed and f is surjective, (g ∘ f)(f⁻¹(V)) = g(V) is δsg*-closed in (Z, η). Therefore g : (Y, σ) → (Z, η) is a δsg*-closed function.

(c) Let V be any closed set in (X, τ). Since g ∘ f is a δsg*-closed function, (g ∘ f)⁻¹(V) is δsg*-closed in (Z, η). Since g is quasi δsɡ*-continuous and injective g⁻¹(g ∘ f)(V) = f(V) is closed in (Y, σ). Therefore f : (X, τ) → (Y, σ) is a closed function.

6.5 δsg*-Open Functions

Definition 6.5.1 A function f : (X, τ) → (Y, σ) is called a δsg*-open function if the image of each open set in (X, τ) is a δsg*-open set in (Y, σ).

Proposition 6.5.2 For any bijective function f : (X, τ) → (Y, σ) the following statements are equivalent.

(a) f⁻¹ : (Y, σ) → (X, τ) is a δsg*-continuous function.

(b) f is a δsg*-open function.

(c) f is a δsg*-closed function.

Proof: (a) ⇒ (b) Let U be an open set in (X, τ). Since f⁻¹ is a δsg*-continuous function, (f⁻¹)⁻¹(U) is δsg*-open in (Y, σ). As f is bijective, (f⁻¹)⁻¹(U) = f(U) which is δsg*-open in (Y, σ). Hence f is a δsg*-open function.

(b) ⇒ (c) Let V be a closed set in (X, τ). Then X \ V is open in (X, τ). Since f is δsg*-open, f(X \ V) is δsg*-open in (Y, σ). That is f(X \ V) = Y \ f(V) which is δsg*-open in (Y, σ). This implies that f(V) is δsg*-closed in (Y, σ). Hence f is a δsg*-closed function.
A study on δ_{sg}^*-Closed Sets in Topological Spaces

(c) \Rightarrow (a) Let V be a closed set in (X, τ). Since f is a δ_{sg}^*-closed function, $f(V)$ is δ_{sg}^*-closed in (Y, σ). But $f(V) = (f^{-1})^{-1}(V)$ is δ_{sg}^*-closed in (Y, σ). Hence f^{-1} is a δ_{sg}^*-continuous function.

Proposition 6.5.3 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be any function and $g : (Y, \sigma) \rightarrow (Z, \eta)$ be injective and a δ_{sg}^*-irresolute function. If their composition function $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is δ_{sg}^*-open then f is δ_{sg}^*-open in (Y, σ).

Proof: Let V be any open set in (X, τ). Since $(g \circ f)$ is δ_{sg}^*-open, $(g \circ f)(V)$ is δ_{sg}^*-open in (Z, η). Since g is δ_{sg}^*-irresolute and injective, $g^{-1}[(g \circ f)(V)] = f(V)$ is δ_{sg}^*-open in (Y, σ).

Hence f is a δ_{sg}^*-open function.

6.6 δ_{sg}^*-Homeomorphisms

Definition 6.6.1 A bijective function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called a δ_{sg}^*-homeomorphism if f is both δ_{sg}^*-continuous and a δ_{sg}^*-open function.

Proposition 6.6.2 Every δ_{sg}^*-homeomorphism is a gs-homeomorphism but not conversely.

Proof: Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a δ_{sg}^*-homeomorphism. Then f is bijective, δ_{sg}^*-continuous and δ_{sg}^*-open function. Let V be a closed set in (Y, σ). Then $f^{-1}(V)$ is δ_{sg}^*-closed in (X, τ). By Theorem 2.2.17, every δ_{sg}^*-closed set is gs-closed, $f^{-1}(V)$ is gs-closed in (X, τ). This implies that f is gs-continuous. Let U be an open set in (X, τ). Then $f(U)$ is δ_{sg}^*-open in (Y, σ). Since every δ_{sg}^*-open set is gs-open, $f(U)$ is gs-open in (Y, σ). Hence f is a gs-open function. Therefore f is a gs-homeomorphism.

Example 6.6.3 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is gs-homeomorphism but not a δ_{sg}^*-homeomorphism, since for the closed set $\{c\}$ in Y, $f^{-1}\{c\} = \{c\}$ is not δ_{sg}^*-closed in (X, τ).

Proposition 6.6.4

(a) Every δ_{sg}^*-homeomorphism is a δ_{gs}-homeomorphism.

(b) Every δ_{sg}^*-homeomorphism is a $g\delta_{gs}$-homeomorphism.

(c) Every δ_{sg}^*-homeomorphism is a gsp-homeomorphism.
(d) Every δg^*-homeomorphism is a $\pi g s$-homeomorphism.
(e) Every δg^*-homeomorphism is a $\pi g s p$-homeomorphism.

Proof: Follows from the fact that every δg^*-continuous function (resp. open function) is $\delta g s^*$, $g s^*$, $g s p^*$, $\pi g s^*$, $\pi g s p^*$-continuous function (resp. open function). The reverse relations don’t hold good which can be seen from the following examples.

Example 6.6.5 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the function defined by $f(a) = b$, $f(b) = c$, $f(c) = a$. Then f is a $\delta g s$-homeomorphism but not a δg^*-homeomorphism, since for the closed set $\{b,c\}$ in (Y, σ), $f^{-1}\{b,c\} = \{a,b\}$ is not δg^*-closed in (X, τ). This implies f is not a δg^*-homeomorphism.

Example 6.6.6 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is a $g s^*$-homeomorphism but not a δg^*-homeomorphism, since for the closed set $\{a,c\}$ in (Y, σ), $f^{-1}\{a,c\} = \{a,c\}$ is not δg^*-closed in (X, τ).

Example 6.6.7 Let $X = Y = \{a, b, c, d\}$ with $\tau = \{X, \phi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is a $g s p$-homeomorphism but not a δg^*-homeomorphism, since for the closed set $\{d\}$ in (Y, σ), $f^{-1}\{d\} = \{d\}$ is not δg^*-closed in (X, τ).

Example 6.6.8 Let $X = Y = \{a, b, c, d\}$ with $\tau = \{X, \phi, \{a,b,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,c,d\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the function defined by $f(a) = b$, $f(b) = a$, $f(c) = c$ $f(d) = d$. Then f is a $\pi g s$-homeomorphism but not a δg^*-homeomorphism, since for the closed set $\{b\}$ in (Y, σ), $f^{-1}\{b\} = \{a\}$ is not δg^*-closed in (X, τ).

Example 6.6.9 Let $X = Y = \{a, b, c, d\}$ with $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a,b\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is a $\pi g s p$-homeomorphism but not a δg^*-homeomorphism, since for the closed set $\{c,d\}$ in (Y, σ), $f^{-1}\{c,d\} = \{c,d\}$ is not δg^*-closed in (X, τ).

Remark 6.6.10

(a) Every δ-homeomorphism is a δg^*-homeomorphism but not conversely.
Every δ-semi homeomorphism is a δsg^*-homeomorphism but not conversely.

Example 6.6.11 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is a δsg^*-homeomorphism but not δ-homeomorphism and not δ-semi homeomorphism as f is not a δ-open function and not a δ-semi open function, since for the open set $\{a\}$ in (X, τ), $f\{a\} = \{a\}$ is not δ-open and not δ-semi open in (Y, σ).

Remark 6.6.12 A homeomorphism and a δsg^*-homeomorphism are independent of each other as shown in the following examples.

Example 6.6.13 Let $X = Y = \{a, b, c, d\}$ with $\tau = \{X, \phi, \{a\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a,b\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is δsg^*-open and δsg^*-continuous. Hence f is a δsg^*-homeomorphism but not a homeomorphism, since for the image of open set $\{a\}$ in (X, τ), $f\{a\} = \{a\}$ is not open in (Y, σ). Hence f is not an open function. Therefore f is not a homeomorphism.

Example 6.6.14 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is open and continuous. Hence f is a homeomorphism but not a δsg^*-homeomorphism, since for the closed set $\{c\}$ in (Y, σ), $f^{-1}\{c\} = \{c\}$ is not δsg^*-closed in (X, τ). Hence f is not a δsg^*-homeomorphism.

Remark 6.6.15 A g-homeomorphism and a δsg^*-homeomorphism are independent of each other as shown in the following examples.

Example 6.6.16 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is δsg^*-open and δsg^*-continuous. Hence f is a δsg^*-homeomorphism but not a g-homeomorphism, since for the image of open set $\{a,c\}$ in (X, τ), $f\{a,c\} = \{a,c\}$ is not g-open in (Y, σ). Hence f is not a g-open function. Therefore f is not a g-homeomorphism.

Example 6.6.17 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is a g-homeomorphism but
not a δ_{sg^*}-homeomorphism, since for the open set $\{b\}$ in (Y, σ), $f^{-1}\{b\} = \{b\}$ is not δ_{sg^*}-open in (X, τ). Hence f is not a δ_{sg^*}-homeomorphism.

Remark 6.6.18 A sg-homeomorphism and a δ_{sg^*}-homeomorphism are independent of each other as shown in the following examples.

Example 6.6.19 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is δ_{sg^*}-open and δ_{sg^*}-continuous. Hence f is a δ_{sg^*}-homeomorphism but not a sg-homeomorphism, since for the open set $\{b\}$ in (X, τ), $f(\{b\}) = \{b\}$ is not sg-open in (Y, σ). Hence f is not a sg-homeomorphism.

Example 6.6.20 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a,b\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is a sg-homeomorphism but not a δ_{sg^*}-homeomorphism, since for the open set $\{a,b\}$ in (Y, σ), $f^{-1}\{a,b\} = \{a,b\}$ is not δ_{sg^*}-open in (X, τ). Hence f is not a δ_{sg^*}-homeomorphism.

Proposition 6.6.21 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a bijective function and δ_{sg^*}-continuous function. Then the following statements are equivalent.

(a) f is a δ_{sg^*}-open function.

(b) f is a δ_{sg^*}-homeomorphism.

(c) f is a δ_{sg^*}-closed function.

Proof: (a) \Rightarrow (b) Let f be a δ_{sg^*}-open function. By hypothesis, f is bijective and δ_{sg^*}-continuous. Hence f is a δ_{sg^*}-homeomorphism.

(b) \Rightarrow (c) Let f be a δ_{sg^*}-homeomorphism. Then f is δ_{sg^*}-open, by Proposition 6.5.2, f is a δ_{sg^*}-closed function.

(c) \Rightarrow (a) It is obtained from the Proposition 6.5.2.
Remark 6.6.22 The above discussion is portrayed in the following diagram.

![Diagram of homeomorphisms](image)

Definition 6.6.23 A bijective function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be a δ_{sg}^*-homeomorphism if both f and f^{-1} are δ_{sg}^*-irresolute.

The family of all δ_{sg}^*-homeomorphisms of a topological space (X, τ) onto itself is denoted by $\delta_{sg}^*(X, \tau)$.

Remark 6.6.24 A δ_{sg}^*-homeomorphism and a δ_{sg}^*-homeomorphism are independent notions as shown in the following example.

Example 6.6.25 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is a δ_{sg}^*-homeomorphism since $\delta_{sg}^*\tau = \delta_{sg}^*\sigma = \{X, \phi, \{a\}\}$ but it is not a δ_{sg}^*-homeomorphism, since for the open set $\{a,b\}$ in (X, τ), $f\{a,b\} = \{a,b\}$ is not δ_{sg}^*-open in (Y, σ).

Remark 6.6.26 The composition of two δ_{sg}^*-homeomorphisms is not δ_{sg}^*-homeomorphism, since composition of two δ_{sg}^*-continuous functions is not δ_{sg}^*-continuous.

Theorem 6.6.27 The composition of two δ_{sg}^*-homeomorphisms is a δ_{sg}^*-homeomorphism.

Proof: By Proposition 5.2.21, Composition of two δ_{sg}^*-irresolute functions is δ_{sg}^*-irresolute, the proof follows.
Chapter 6

Theorem 6.6.28 Every $δsg^*$-homeomorphism from a $δsg^*Tδ$-space into another $δsg^*Tδ$-space is a homeomorphism.

Proof: Let $f : (X, τ) → (Y, σ)$ be a $δsg^*$-homeomorphism. Then f is bijective, $δsg^*$-open and $δsg^*$-continuous functions. Let U be an open set in $(X, τ)$. Since f is $δsg^*$-open and since $(Y, σ)$ is $δsg^*Tδ$-space, $f(U)$ is $δ$-open which implies that $f(U)$ is an open set in $(Y, σ)$. This implies that f is an open function. Let V be a closed set in $(Y, σ)$. Since f is $δsg^*$-continuous and since $(X, τ)$ is $δsg^*Tδ$-space, $f^{-1}(V)$ is $δ$-closed in $(X, τ)$, which implies that $f^{-1}(V)$ is closed in $(X, τ)$. Therefore f is continuous. Hence f is a homeomorphism.

Theorem 6.6.29 Let $(Y, σ)$ be $δsg^*Tδ$-space. If $f : (X, τ) → (Y, σ)$ and $g : (Y, σ) → (Z, η)$ are $δsg^*$-homeomorphisms then $g ◦ f$ is a $δsg^*$-homeomorphism.

Proof: Let $f : (X, τ) → (Y, σ)$ and $g : (Y, σ) → (Z, η)$ be $δsg^*$-homeomorphisms. Let U be an open set in $(X, τ)$. Since f is a $δsg^*$-open function, $f(U)$ is a $δsg^*$-open set in $(Y, σ)$. Since $(Y, σ)$ is $δsg^*Tδ$-space, $f(U)$ is $δ$-open in $(Y, σ)$. Since every $δ$-open set is open, $f(U)$ is open in $(Y, σ)$. Also since g is a $δsg^*$-open function, $g(f(U))$ is $δsg^*$-open in $(Z, η)$. Hence $g ◦ f$ is a $δsg^*$-open function.

Let V be a closed set in $(Z, η)$. Since g is $δsg^*$-continuous and $(Y, σ)$ is $δsg^*Tδ$-space, $g^{-1}(V)$ is closed implies that $g^{-1}(V)$ is closed in $(Y, σ)$. Since f is $δsg^*$-continuous, $f^{-1}(g^{-1}(V)) = (g ◦ f)^{-1}(V)$ is a $δsg^*$-closed set in $(X, τ)$. That is $g ◦ f$ is $δsg^*$-continuous. Hence $g ◦ f$ is a $δsg^*$-homeomorphism.

Theorem 6.6.30 Every $δsg^*$-homeomorphism from a $δsg^*Tδ$-space into another $δsg^*Tδ$-space is a $δsg^*C$-homeomorphism.

Proof: Let $f : (X, τ) → (Y, σ)$ be a $δsg^*$-homeomorphism. Let V be a $δsg^*$-closed set in $(Y, σ)$. Then V is closed in $(Y, σ)$. Since f is $δsg^*$-continuous, $f^{-1}(V)$ is $δsg^*$-closed in $(X, τ)$. Hence f is a $δsg^*$-irresolute function. Let U be a $δsg^*$-open set in $(X, τ)$. Then U is open in $(X, τ)$. Since f is $δsg^*$-open, $f(U)$ is a $δsg^*$-open set in $(Y, σ)$. That is $(f^{-1})^{-1}(U)$ is $δsg^*$-open in $(Y, σ)$ and hence f^{-1} is $δsg^*$-irresolute. Thus f is a $δsg^*C$-homeomorphism.
Chapter 6

Theorem 6.6.31 The set $\delta^*CH(X, \tau)$ is a group under the composition of functions.

Proof: Let us define a binary operation $\ast : \delta^*CH(X, \tau) \times \delta^*CH(X, \tau) \rightarrow \delta^*CH(X, \tau)$ by $(f \ast g) = (g \circ f)$ for every $f, g \in \delta^*CH(X, \tau)$ and \circ is the usual operation of composition of functions. Then by the Theorem 6.6.27, $(g \circ f) \in \delta^*CH(X, \tau)$. We know that the composition of functions is associative and the identity function $I : (X, \tau) \rightarrow (X, \tau)$ belongs to $\delta^*CH(X, \tau)$ serves as the identity element. If $f \in \delta^*CH(X, \tau)$ then $f^{-1} \in \delta^*CH(X, \tau)$ such that $(f \circ f^{-1}) = f^{-1} \circ f = I$. So the inverse exists for each element of $\delta^*CH(X, \tau)$. Therefore $\delta^*CH(X, \tau)$ is a group under the operation of composition of functions.

Theorem 6.6.32 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a δ^*C-homeomorphism. Then f induces an isomorphism from the group $\delta^*CH(X, \tau)$ onto the group $\delta^*CH(Y, \sigma)$.

Proof: Using the function f, let us define a function $\theta_f : \delta^*CH(X, \tau) \rightarrow \delta^*CH(Y, \sigma)$ by $\theta_f(\mathcal{A}) = f \circ \mathcal{A} \circ f^{-1}$ for every $\mathcal{A} \in \delta^*CH(X, \tau)$. Then θ_f is a bijective function. Further for every $\mathcal{A}_1, \mathcal{A}_2 \in \delta^*CH(X, \tau)$, $\theta_f(\mathcal{A}_1, \mathcal{A}_2) = f \circ (\mathcal{A}_1 \circ \mathcal{A}_2) \circ f^{-1} = (f \circ \mathcal{A}_1 \circ f^{-1}) \circ (f \circ \mathcal{A}_2 \circ f^{-1}) = \theta_f(\mathcal{A}_1) \circ \theta_f(\mathcal{A}_2)$. Therefore θ_f is a homomorphism. Hence θ_f is an isomorphism induced by f.

Theorem 6.6.33 The δ^*C-homeomorphism is an equivalence relation in the collection of all topological spaces.

Proof: The reflexivity and symmetric relations are immediate and the transitivity follows from the Theorem 6.6.27.

6.7 δ^* - Compactness and δ^* - Connectedness

In this section, the concept of δ^*-compact spaces and δ^*-connected spaces are introduced and characterizations of δ^*-connected spaces are discussed.

Definition 6.7.1 A collection \mathcal{A} of subsets of a space (X, τ) is said to cover X or to be a covering of X if the union of the elements of \mathcal{A} is equal to X. It is called a δ^*-open covering of X if its elements are δ^*-open subsets of (X, τ).

Definition 6.7.2 A nonempty collection $\{A_i, i \in \Lambda\}$, an index set of δ^*-open sets in a topological space (X, τ) is called a δ^*-open cover of a subset B of (X, τ) if $B \subseteq \bigcup \{A_i, i \in \Lambda\}$.
Definition 6.7.3 A topological space \((X, \tau)\) is \(\delta sg^*\)-compact if every \(\delta sg^*\)-open cover of \((X, \tau)\) has a finite subcover.

Definition 6.7.4 A subset \(B\) of a topological space \((X, \tau)\) is called \(\delta sg^*\)-compact relative to \(X\) if for every collection \(\{A_i, i \in \Lambda\}\) of \(\delta sg^*\)-open subsets of \((X, \tau)\) such that \(B \subseteq \bigcup \{A_i, i \in \Lambda\}\) there exists a finite collection \(\Lambda_0\) of \(\Lambda\) such that \(B \subseteq \bigcup \{A_i, i \in \Lambda_0\}\).

Theorem 6.7.5 A \(\delta sg^*\)-closed subset \(A\) of a \(\delta sg^*\)-compact space \((X, \tau)\) is \(\delta sg^*\)-compact relative to \((X, \tau)\).

Proof: Let \(A\) be a \(\delta sg^*\)-closed subset of a \(\delta sg^*\)-compact space \((X, \tau)\). Then \(X \setminus A\) is \(\delta sg^*\)-open in \((X, \tau)\). Let \(\Omega\) be a \(\delta sg^*\)-open cover of \(A\) in \((X, \tau)\). Then \(\Omega \cup \{X \setminus A\}\) is a \(\delta sg^*\)-open cover of \((X, \tau)\). Since \((X, \tau)\) is \(\delta sg^*\)-compact, it has a finite subcover of \(\Omega\) say, \(\{P_1, P_2, P_3, \ldots P_n\} = \Omega_1\). If \(X \setminus A \notin \Omega_1\) then \(\Omega_1\) is a finite subcover of \(A\). If \(X \setminus A \in \Omega_1\) then \(\Omega_1 \setminus \{X \setminus A\}\) is a finite subcover of \(A\). Hence \(A\) is \(\delta sg^*\)-compact relative to \((X, \tau)\).

Theorem 6.7.6 Let \(f : (X, \tau) \rightarrow (Y, \sigma)\) be a surjective \(\delta sg^*\)-continuous function. If \((X, \tau)\) is \(\delta sg^*\)-compact then \((Y, \sigma)\) compact.

Proof: Let \(\{V_i : i \in \Lambda\}\) be an open cover of \((Y, \sigma)\). Since \(f\) is \(\delta sg^*\)-continuous, \(\{f^{-1}(V_i) : i \in \Lambda\}\) is a \(\delta sg^*\)-open cover of \((X, \tau)\). Since \((X, \tau)\) is \(\delta sg^*\)-compact, it has a finite subcover of \((X, \tau)\), say \(\{f^{-1}(V_1), f^{-1}(V_2), \ldots f^{-1}(V_n)\}\). Since \(f\) is surjective, \(\{V_1, V_2, \ldots V_n\}\) is a finite open cover of \((Y, \sigma)\). Hence \((Y, \sigma)\) is compact.

Theorem 6.7.7 If \(f : (X, \tau) \rightarrow (Y, \sigma)\) is a surjective quasi \(\delta sg^*\)-continuous function where \((X, \tau)\) is a compact space, then \((Y, \sigma)\) is \(\delta sg^*\)-compact.

Proof: Let \(\{V_i : i \in \Lambda\}\) be a \(\delta sg^*\)-open cover of \((Y, \sigma)\). Since \(f\) is quasi \(\delta sg^*\)-continuous, \(\{f^{-1}(V_i) : i \in \Lambda\}\) is an open cover of \((X, \tau)\). Since \((X, \tau)\) is compact, it has a finite subcover say, \(\{f^{-1}(V_1), f^{-1}(V_2), \ldots f^{-1}(V_n)\}\). Since \(f\) is surjective, \(\{V_1, V_2, \ldots V_n\}\) is a finite subcover of \((Y, \sigma)\) and therefore \((Y, \sigma)\) is \(\delta sg^*\)-compact.

Corollary 6.7.8 If \(f : (X, \tau) \rightarrow (Y, \sigma)\) is a surjective perfectly \(\delta sg^*\)-continuous function where \((X, \tau)\) is a compact space, then \((Y, \sigma)\) is \(\delta sg^*\)-compact.

Proof: Since every perfectly \(\delta sg^*\)-continuous function is quasi \(\delta sg^*\)-continuous function, the result follows.
Theorem 6.7.9 If a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\delta sg^* \)-irresolute and a subset \(B \) of \((X, \tau) \) is \(\delta sg^* \)-compact relative to \((X, \tau) \), then the image \(f(B) \) is \(\delta sg^* \)-compact relative to \((Y, \sigma) \).

Proof: Let \(\{A_i : i \in \Lambda\} \) be any collection of \(\delta sg^* \)-open subsets of \((Y, \sigma) \) such that \(f(B) \subset \bigcup \{A_i : i \in \Lambda\} \). Then \(B \subset \bigcup \{f^{-1}(A_i) : i \in \Lambda\} \), \(\{f^{-1}(A_i) : i \in \Lambda\} \subseteq \delta SG^*O(X, \tau) \). Since by hypothesis \(B \) is \(\delta sg^* \)-compact relative to \((X, \tau) \) there exists a finite collection \(\Lambda_o \) of \(\Lambda \) such that \(B \subset \bigcup \{f^{-1}(A_i) : i \in \Lambda_o\} \). Therefore \(f(B) \subset \bigcup \{A_i : i \in \Lambda_o\} \), which shows that \(f(B) \) is \(\delta sg^* \)-compact relative to \((Y, \sigma) \).

Definition 6.7.10 A topological space \((X, \tau) \) is called \(\delta sg^* \)-connected if \(X \) cannot be expressed as a union of two disjoint nonempty \(\delta sg^* \)-open sets.

Theorem 6.7.11 For a topological space \((X, \tau) \) the following are equivalent:

(a) \((X, \tau) \) is \(\delta sg^* \)-connected.

(b) \(X \) and \(\phi \) are the only subsets of \((X, \tau) \) which are both \(\delta sg^* \)-open and \(\delta sg^* \)-closed.

(c) Each \(\delta sg^* \)-continuous function of \((X, \tau) \) into a discrete space \((Y, \sigma) \) with at least two points is a constant function.

Proof: (a) \(\Rightarrow \) (b) Let \(U \) be a \(\delta sg^* \)-open and \(\delta sg^* \)-closed subset of \((X, \tau) \). Then \(X \setminus U \) is both \(\delta sg^* \)-open and \(\delta sg^* \)-closed. Since \((X, \tau) \) is the disjoint union of the \(\delta sg^* \)-open sets \(U \) and \(X \setminus U \), one of these must be empty, that is \(U = \phi \) or \(U = X \).

(b) \(\Rightarrow \) (a) Suppose \(X = A \cup B \) where \(A \) and \(B \) are two non-empty disjoint \(\delta sg^* \)-open subsets of \((X, \tau) \). Since \(A = X \setminus B \), \(A \) is \(\delta sg^* \)-closed. By assumption \(A = \phi \) or \(X \), which is a contradiction. Hence \((X, \tau) \) is \(\delta sg^* \)-connected.

(b) \(\Rightarrow \) (c) Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a \(\delta sg^* \)-continuous function, where \((Y, \sigma) \) is a discrete space with at least two points. Since \((Y, \sigma) \) is a discrete space, for each \(y \in Y \), \(\{y\} \) is both open and closed. Since \(f \) is a \(\delta sg^* \)-continuous function, \(f^{-1}(\{y\}) \) is \(\delta sg^* \)-closed and \(\delta sg^* \)-open and \(X = \bigcup \{f^{-1}(\{y\}) : y \in Y\} \). By assumption \(f^{-1}(\{y\}) = \phi \) or \(X \) for each \(y \in Y \). If \(f^{-1}(\{y\}) = \phi \) for all \(y \in Y \), then \(f \) will not be a function. If \(f^{-1}(\{y\}) = X \) for a single \(y \in Y \), then there cannot exist one more \(y_1 \in Y \) such that \(f^{-1}(\{y_1\}) = X \). Hence there exist only one \(y \in Y \)
such that $f^{-1}(\{y\}) = X$ and $f^{-1}(\{y\}) = \phi$ where $y_1 \in Y$ and $y_1 \neq y$. This shows that f is a constant function.

(c) \Rightarrow (b) Let U be both δsg^*-open and δsg^*-closed in (X, τ). Suppose $U = \phi$, Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a δsg^*-continuous function defined by $f(U) = \{y\}$ and $f(X \setminus U) = \{w\}$ for some distinct points y and w in (Y, σ). By assumption f is constant. Therefore $y = w$ which implies $U = X$.

Theorem 6.7.12 If $f : (X, \tau) \rightarrow (Y, \sigma)$ is a δsg^*-continuous surjection and (X, τ) is δsg^*-connected then (Y, σ) is connected.

Proof: Suppose that (Y, σ) is not connected. Let $Y = A \cup B$ where A and B are disjoint non-empty open sets in (Y, σ). Since f is δsg^*-continuous and onto, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty δsg^*-open sets in (X, τ). This contradicts the fact that (X, τ) is δsg^*-connected. Hence (Y, σ) is connected.

Theorem 6.7.13 If $f : (X, \tau) \rightarrow (Y, \sigma)$ is δsg^*-irresolute surjection and (X, τ) is δsg^*-connected then (Y, σ) is δsg^*-connected.

Proof: Suppose that (Y, σ) is not δsg^*-connected. Let $Y = A \cup B$ where A and B are disjoint non-empty δsg^*-open sets in (Y, σ). Since f is δsg^*-irresolute and onto, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty δsg^*-open sets in (X, τ). This contradicts the fact that (X, τ) is δsg^*-connected. Hence (Y, σ) is δsg^*-connected.

Theorem 6.7.14 If (X, τ) is both δsg^*T_δ-space and connected then (X, τ) is δsg^*-connected.

Proof: Suppose that (X, τ) is connected. Then X cannot be expressed as disjoint union of two non-empty proper open subsets of (X, τ). Suppose (X, τ) is not δsg^*-connected, then $X = A \cup B$ where A and B are two disjoint non-empty δsg^*-open sets. Since (X, τ) is a δsg^*T_δ-space, A and B are open in (X, τ). Hence (X, τ) is not connected which is a contradiction. Therefore (X, τ) is connected.