LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Design layout of seven poles low-pass filter (distributed element)</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Design layout of Defected Ground Structure filter</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Flow chart depicted effect of Defected Ground Structures (DGS)</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Design layout of waveguide filter</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Design layout of coupled line resonator filter</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Design layout of dielectric resonator loaded microstrip filter</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>DGS equivalent-circuit model</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Dumb-bell shaped DGS in microstrip line</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Effect of slow wave factor due to phase constant and phase velocity</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Schematic model of top view of square dumb-bell shaped DGS</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Schematic model of bottom view square dumb-bell shaped DGS</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Frequency response curve of square dumb-bell shaped DGS</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Phase variation of square shaped DGS</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Conventional design and analysis method of DGS</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Schematic model of square dumb-bell shaped DGS</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Frequency response curve of square shaped DGS</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Schematic model of circular dumb-bell shaped DGS</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Frequency response curve of circular shaped DGS</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Schematic model of triangular dumb-bell shaped DGS</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.14</td>
<td>Frequency response curve of triangular shaped DGS</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3.15</td>
<td>Schematic model of hexagonal dumb-bell shaped DGS</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3.16</td>
<td>Frequency response curve of hexagonal shaped DGS</td>
<td>35</td>
</tr>
</tbody>
</table>
Figure 3.17: Schematic model of hexagonal dumb-bell shaped DGS with trans-metal

Figure 3.18: Frequency response curve of hexagonal shaped DGS with trans-metal

Figure 3.19: Comparison of frequency response curve (S21) of various types of DGS

Figure 3.20: Comparison of frequency response curve (S11) of various types of DGS

Figure 3.21: Schematic (top view) model of band-stop filter with small patch on triangular ring DGS

Figure 3.22: Schematic (top view) model of band-stop filter with small patch on triangular ring DGS

Figure 3.23: Frequency response of band-stop filter

Figure 3.24: E-Field variation of band-stop filter

Figure 3.25: H-Field variation of band-stop filter

Figure 3.26: Schematic model (top view) of low-pass filter with arrow head DGS

Figure 3.27: Schematic model (bottom view) of low-pass filter with arrow-head DGS

Figure 3.28: Frequency response curve of low-pass filter with arrow head DGS

Figure 3.29: E-field variation of low-pass filter with arrow head DGS
Figure 3.30: H-field variation of low-pass filter with arrow head DGS 44

Figure 4.1: Relative Q-factor, insertion loss and size of different resonators 47

Figure 4.2: Magnetic field lines of the resonant mode TE_{01δ} in an isolated Dielectric Resonator 48

Figure 4.3: Different shapes of dielectric resonators 49

Figure 4.4: Coupling between the dielectric resonator and microstrip line 55

Figure 4.5: Dielectric resonator coupled with microstrip line (equivalent circuit) 55

Figure 4.6: Equivalent circuit (assumed to be lossless) 56

Figure 4.7: Simplified equivalent circuit 56

Figure 4.8: Final equivalent circuit of the dielectric resonator coupled with a line 57

Figure 4.9: Magnetic flux linkage of the resonator field into the microstrip line 59

Figure 4.10: Distributed equivalent circuit 61

Figure 4.11: Two dielectric resonators coupled by magnetic dipole moment 62

Figure 4.12 (a): Field pattern of the TE_{01} mode dielectric ring resonator 65

Figure 4.12 (b): Field pattern of the TM_{01} mode dielectric ring resonator 65

Figure 4.12 (c): Field pattern of the HE_{11} mode dielectric ring resonator 65

Figure 4.12 (d): Field pattern of the HE_{21} mode dielectric ring resonator 65

Figure 4.13 (a): Field pattern of TE_{01} mode Dielectric Resonator (E-field) 66

Figure 4.13 (b): Field pattern of TE_{01} mode Dielectric Resonator (H-field) 66

Figure 4.14: Height versus Q-factor (at radius =3.75 mm) 67

Figure 4.15: Height versus frequency (radius =3.75 mm) 67

Figure 4.16: Height versus Q-factor (radius =3.75 mm) 68

Figure 4.17: Radius versus Q-factor (height =3.5 mm) 68
Figure 4.18: Radius versus frequency (height =3.5 mm) 69

Figure 4.19: Radius versus Q-factor and frequency (height =3.5 mm) 69

Figure 4.20: Height versus Q-factor at different radius 70

Figure 5.1: Geometry of dielectric resonator filter 78

Figure 5.2: Schematic HFSS Model of low-pass-band-pass DR filter 78

Figure 5.3: Fabricated model of low-pass-band-pass DR filter 79

Figure 5.4: Frequency response curve of low-pass-band-pass filter (simulated) 75

Figure 5.5: Frequency response curve of low-pass band-pass filter (measured) 80

Figure 5.6: Frequency response curve (S11) simulated and measured results 81

Figure 5.7: Frequency response curve (S21) simulated and measured results 81

Figure 5.8 E-Field distributions 82

Figure 5.9 H-Field distributions 82

Figure 5.10: Geometry of multiband dielectric resonator filter 84

Figure 5.11: Schematic HFSS model of multiband DR filter 85

Figure 5.12: Frequency response curve of multiband dielectric resonator filter 85

Figure 5.13: E-field variation of multiband dielectric resonator filter 86

Figure 5.14: H-field variation of multiband dielectric resonator filter 86

Figure 5.15: Schematic HFSS model of low pass dielectric resonator filter 89

Figure 5.16: Fabricated model of low pass DRF 89
Figure 5.17: Frequency response curve of low pass dielectric resonator filter
Figure 5.18: E-field variation of low pass dielectric resonator filter
Figure 5.19: H-field variation of low pass dielectric resonator filter
Figure 5.20: Comparison of simulated and measured result of S11
Figure 5.21: Comparison of simulated and measured result of S21
Figure 5.22: Geometry of dielectric resonator band-pass filter
Figure 5.23: Schematic HFSS model of dielectric resonator band-pass filter
Figure 5.24: Frequency response curve of dielectric resonator band-pass filter
Figure 5.25: E-field variation of dielectric resonator band-pass filter
Figure 5.26: H-field variation of dielectric resonator band-pass filter
Figure 6.1: Dual band dielectric resonator filter (top view)
Figure 6.2 Dual band dielectric resonator filter (bottom view)
Figure 6.3 Geometry of dielectric resonator
Figure 6.4: E-field variations of dual band dielectric resonator filter
Figure 6.5: H-field variations of dual band dielectric resonator filter
Figure 6.6 Frequency response curve of dielectric resonator filter
Figure 6.7: Geometry of dielectric resonator filter with DGS
Figure 6.8: Insertion loss at variable thickness “t”
Figure 6.9: Return loss at variable thickness “t”
Figure 6.10: Top view of fabricated model of filter

Figure 6.11: Bottom view of fabricated model of filter

Figure 6.12: S-Parameters of simulated and measured result at t = 0.75 mm

Figure 6.13: Geometry of band-pass filter with DGS and DMS

Figure 6.14: Top view of HFSS model of filter (without DRs)

Figure 6.15: Top view of HFSS model of bandpass filter (with DRs)

Figure 6.16: Bottom view of HFSS model of bandpass filter (with DGS)

Figure 6.17: Frequency response of simulated result

Figure 6.18: E-field variation of bandpass filter

Figure 6.19: H-field variation of bandpass filter

Figure 6.20 (a): Fabricated model of top view of microstrip line without DR

Figure 6.20 (b): Fabricated model of bottom view of microstrip line without DR

Figure 6.21: Fabricated model of DR band-pass filter with DGS

Figure 6.22: Frequency response curve of measured result

Figure 6.23: Comparison of S11 of simulated and measured results

Figure 6.24: Comparison of S21 of simulated and measured results

Figure 6.25: Geometry of filter

Figure 6.26 (a): Dielectric resonator coupled with microstrip line

Figure 6.26 (b): Equivalent circuit of DR coupled with microstrip line
Figure 6.27: Top view of dielectric resonator bandstop filter with ring type DGS

Figure 6.28: Bottom view of DR bandstop filter with ring type DGS.

Figure 6.29: Simulated frequency response curve of bandstop filter

Figure 6.30: E-Field pattern of band-stop filter

Figure 6.31: H-Field pattern of band-stop filter

Figure 6.32 (a): Topview of fabricated model of DR band-stop filter with DGS

Figure 6.32 (b): Bottom view of fabricated model of DR bandstop filter with DGS

Figure 6.33: Simulated frequency response curve of bandstop filter

Figure 6.34: Comparison of S11 of simulated and measured results

Figure 6.35: Comparison of S21 of simulated and measured results

Figure 6.36: Geometry of dual-band DR filter with defect on microstrip structure

Figure 6.37: Top view of HFSS model of dual band-pass filter (without DRs)

Figure 6.38: Top view of HFSS model of dual band-pass filter (with DRs)

Figure 6.39: E-Field variation of filter

Figure 6.40: H-Field Variation of filter

Figure 6.41: Frequency response curve of dual-band dielectric resonator filter