TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxi</td>
</tr>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1.</td>
<td>MOTIVATION FOR THE CURRENT RESEARCH</td>
<td>4</td>
</tr>
<tr>
<td>1.2.</td>
<td>ORGANISATION OF THE THESIS</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>REVIEW OF LITERATURE</td>
<td>8</td>
</tr>
<tr>
<td>2.1.</td>
<td>HYBRID ROCKET DEVELOPMENT HISTORY</td>
<td>8</td>
</tr>
<tr>
<td>2.2.</td>
<td>HYBRID ROCKET COMBUSTION MODELS</td>
<td>18</td>
</tr>
<tr>
<td>2.2.1.</td>
<td>Marxman’s Flat Plate Diffusion-Limited Model</td>
<td>18</td>
</tr>
<tr>
<td>2.2.2.</td>
<td>Radiation Effect on Regression Rate</td>
<td>22</td>
</tr>
<tr>
<td>2.3.</td>
<td>LIQUEFYING FUELS COMBUSTION THEORY</td>
<td>27</td>
</tr>
<tr>
<td>2.4.</td>
<td>REGRESSION RATE ENHANCEMENT METHODS</td>
<td>34</td>
</tr>
<tr>
<td>2.4.1.</td>
<td>Fluid Dynamics</td>
<td>34</td>
</tr>
<tr>
<td>2.4.2.</td>
<td>Vortex-oxidizer Injection</td>
<td>35</td>
</tr>
<tr>
<td>2.4.3.</td>
<td>Swirl Oxidizer Injection</td>
<td>36</td>
</tr>
<tr>
<td>2.4.4.</td>
<td>Effect of Metallic Additives</td>
<td>41</td>
</tr>
<tr>
<td>2.4.5.</td>
<td>Turbulence Generators</td>
<td>48</td>
</tr>
<tr>
<td>2.4.6.</td>
<td>Multiport Fuel Grain Configuration</td>
<td>49</td>
</tr>
<tr>
<td>2.5.</td>
<td>MECHANICAL PROPERTIES</td>
<td>50</td>
</tr>
<tr>
<td>2.6.</td>
<td>RESEARCH GAP</td>
<td>51</td>
</tr>
</tbody>
</table>
3. **OBJECTIVE OF THE PRESENT RESEARCH**

4. **MATERIALS AND METHODS**

   4.1. PARAFFIN WAX: SOLID FUEL
   
   4.2. FUEL BINDER AS A REINFORCING MATERIAL
   
   4.3. ENERGETIC ADDITIVEs
   
   4.3.1. Metallic Aluminum
   
   4.3.2. Metallic Boron
   
   4.4. PREPARATION OF SOLID FUEL
   
   4.4.1. Tensile Test Specimen
   
   4.4.2. Solid Fuel Grain
   
   4.4.3. Quality of Prepared Fuel
   
   4.5. PHYSICAL CHARACTERIZATION
   
   4.5.1. Thermal Analysis
   
   4.5.2. Thermogravimetric Analysis (TGA)
   
   4.5.3. Measurement of Combustion Parameters
   
   4.6. MECHANICAL CHARACTERIZATION
   
   4.6.1. Uni-axial Tensile Test
   
   4.6.2. Viscosity Measurement
   
   4.6.3. Scanning Electron Microscope (SEM)
   
   4.7. BALLISTIC CHARACTERIZATION
   
   4.7.1. Lab Scale Motor
   
   4.7.2. Thrust Stand
   
   4.7.3. Igniter Assembly
   
   4.7.4. Integration of Test Motor
   
   4.7.5. Testing Procedure
   
   4.7.6. Test Measurements

5. **RESULTS**

   5.1. THERMAL DECOMPOSITION OF PARAFFIN-BASED FUEL
5.1. Kinetics of Thermal Decomposition

5.1.1. Kinetics of Thermal Decomposition

5.1.2. Density Results

5.1.3. Viscosity Results

5.2. IGNITION OF PARAFFIN-BASED FUELS

5.3. FTIR STUDIES

5.4. MECHANICAL CHARACTERIZATION

5.4.1. Tensile Test

5.4.2. Compression Tests

5.4.3. SEM Studies (SCANNING ELECTRON MICROSCOPY)

5.5. COMPARISON OF REGRESSION RATE OF PARAFFIN-BASED FUELS

6. DISCUSSION

6.1. THERMAL CHARACTERIZATION

6.1.1. Thermal Decomposition of Paraffin-based Fuel

6.1.2. Kinetics of Thermal Decomposition

6.1.3. Ignition of Paraffin-based Fuels

6.2. MECHANICAL CHARACTERIZATION

6.2.1. Tensile Test

6.2.2. Compression Test

6.3. BALLISTIC CHARACTERIZATION

7. SUMMARY

8. FUTURE DIRECTIONS

REFERENCES

APPENDIX-I

APPENDIX-II

APPENDIX-III

LIST OF PUBLICATIONS