LIST OF FIGURE

Figure 1.1 Peristaltic transport in distensible channel (a) local fluid transport due to single peristaltic expansion wave with static fluid (b) Trapped volume in peristaltic expansion wave. ... 1

Figure 1.2 Working of kidney dialysis machine. ... 2

Figure 1.3 Electrokinetic phenomenon (a) EDL formation at solid-liquid interface (b) potential distribution from solid surface. ... 4

Figure 1.4 Schematic of ITP as a tool for in vitro diagnostics. Biochemical analytes from patient samples can be focused using ITP to increase their concentration locally. ... 5

Figure 1.5 Self potential map indicates places of water recharge (red) and discharge (blue). .. 6

Figure 1.6 Direction of magnetic force between two parallel plate in uniform magnetic field. ... 8

Figure 1.7 Geometrical properties of solid skelton for porous medium 9

Figure 1.8 Various Nano particle and base fluids (Rashmi et al. 2014) 10

Figure 1.9 Number of research papers published on peristaltic transport in recent years. .. 12

Figure 1.10 Tree of literature. .. 13

Figure 2.1 Physical model for peristaltic wave propagation induced by electroosmotic flow. .. 24

Figure 2.2 Electric potential profile at $\xi = 1.0, t = 0$ for (a) $\phi = 0.6$, (b) $m = 1$ 30

Figure 2.3 Axial velocity vs. transverse coordinate at $\phi = 0.5, \xi = 1.0, t = 0, \frac{\partial p}{\partial \xi} = 1$ for (a) $U_{HS} = 1$, (b) $m = 1$.. 32

Figure 2.4 Pressure distribution along the length of channel for $\phi = 0.8, l = 1.8$, $p_l = p_0 = 0$, $U_{HS} = 1$. Color lines represent the pressure distribution for different values of Debye length at (a) $t = 0$, (b) $t = 0.2$, (c) $t = 0.4$, (d) $t = 0.6$ 33
Figure 2.5 Pressure distribution along the length of channel at $\phi = 0.8$, $l = 1.8$, $p_i = p_o = 0$, $m = 1$. Color lines represent the pressure distribution for different values of Helmholtz-Smoluchowski velocity at (a) $t = 0$, (b) $t = 0.2$, (c) $t = 0.4$, (d) $t = 0.6$.

Figure 2.6 Pressure distribution along the length of channel at $\phi = 0.8$, $l = 1.8$, $p_i = p_o = 0$, $m = 1$. Color lines represent the pressure distribution for different values of Helmholtz-Smoluchowski velocity at (a) $t = 0$, (b) $t = 0.2$, (c) $t = 0.4$, (d) $t = 0.6$.

Figure 2.7 Local wall shear stress along the length of channel at $\phi = 0.8$, $l = 1.8$, $p_i = p_o = 0$, $m = 1$. Color lines represent the local wall shear stress for different values of Helmholtz-Smoluchowski velocity at (a) $t = 0$, (b) $t = 0.2$, (c) $t = 0.4$, (d) $t = 0.6$.

Figure 2.8 Volumetric flow rate vs. pressure gradient at $\phi = 0.5$, $t = 0$ for different values of (a) electroosmotic parameter, (b) Helmholtz-Smoluchowski velocity.

Figure 2.9 Volumetric flow rate along axial coordinate at $\phi = 0.8$, $t = 0$ for different values of (a) electroosmotic parameter (inverse Debye length parameter), (b) Helmholtz-Smoluchowski velocity.

Figure 2.10 Stream lines at $\phi = 0.5$, $Q = 0.6$, (a) $m = 5$, $U_{HS} = 0$, (b) $m = 5$, $U_{HS} = 1$, (c) $m = 5$, $U_{HS} = 2$, (d) $m = 5$, $U_{HS} = 3$, (e) $m = 8$, $U_{HS} = 1$, (f) $m = 10$, $U_{HS} = 1$.

Figure 3.1 A geometrical description of peristaltic blood flow through the capillary augmented by external electric field. The pressures at the left and right reservoirs (inlet and exit, respectively) are denoted as p_o and p_L respectively.

Figure 3.2 Pressure distribution along the length of tube at $\phi = 0.6$, $L = 2$, $p_L = p_o = 0$, $U_{HS} = 1$ at different time instants (a) $t = 0.1$, (b) $t = 0.25$, (c) $t = 0.5$, (d) $t = 0.75$.

Figure 3.3 Pressure distribution along the length of tube at $\phi = 0.6$, $L = 2$, $p_L = p_o = 0$, $m = 3$ at different time instants (a) $t = 0.1$, (b) $t = 0.25$, (c) $t = 0.5$, (d) $t = 0.75$.

ix
Figure 3.4 Local wall shear stress along the length of tube at $\phi = 0.5, L = 2, p_L = p_0 = 0, U_{HS} = 0.1$ at different time instants (a) $t = 0.1$, (b) $t = 0.25$, (c) $t = 0.5$, (d) $t = 0.75$... 56

Figure 3.5 Local wall shear stress along the length of tube at $\phi = 0.5, L = 2, p_L = p_0 = 0, m = 2$ at different time instants (a) $t = 0.1$, (b) $t = 0.25$, (c) $t = 0.5$, (d) $t = 0.75$... 57

Figure 3.6 Volumetric flow rate against the time for pulse flow at $\phi = 0.6, p_s = 0$, (a) for axial distance (x), with $m = 1, U_{HS} = 1$ from inlet to outlet, (b) for different values of electroosmotic parameter (c) for different values of electroosmotic parameter and Helmholtz-Smoluchowski velocity. ... 59

Figure 3.7 Pressure difference across one wavelength vs. time averaged flow rate at $\phi = 0.6$ and (a) $U_{HS} = 1$, (b) $m = 20$... 60

Figure 3.8 Stream lines in wave form at $\phi = 0.6, Q = 0.7$ for different electroosmotic and Helmholtz-Smoluchowski velocity parameters... 62

Figure 4.1 Geometry of peristaltic pumping with electrical and magnetic field effects. ... 65

Figure 4.2 Initial axial velocity profile vs. Hartmann number at $\phi = 0.6$, and (a) $U_{HS} = 1$ for different Debye length, (b) $m = 5$ for different external electric field... 70

Figure 4.3 Pressure distribution along the length of channel at $\phi = 0.6, l = 2, p_L = p_0 = 0, U_{HS} = 1, m = 5$. Color lines represent the pressure distribution for different values of Hartmann number at (a) $t = 0$, (b) $t = 0.3$, (c) $t = 0.6$, (d) $t = 0.9$. .. 73

Figure 4.4 Local wall shear stress along the length of channel for $\phi = 0.6, l = 2, p_L = p_0 = 0, U_{HS} = 1, m = 5$. Hartmann number at (a) $t = 0$, (b) $t = 0.3$, (c) $t = 0.6$, (d) $t = 0.9$. .. 74

Figure 4.5 Maximum time averaged flow rate flow vs. Hartmann number at $\phi = 0.5$ and (a) $U_{HS} = 1$ for different Debye length, (b) $m = 5$ for different external electric field.. 74
Figure 4.6 Stream lines at $\phi = 0.6, \bar{Q} = 0.6$, $U_{HS} = 1, m = 5$, (a) $Ha = 0.001$, (b) $Ha = 1$, (c) $Ha = 2$, (d) $Ha = 3$.

Figure 4.7 Axial velocity u across the section for $\phi = 0.5, \xi = 1.0, t = 0, \frac{\partial p}{\partial \xi} = 0, U_{HS} = 1, m = 5$ (a) $Ha = 0.0001$ (b) $Ha = 1$.

Figure 5.1 Geometry for electrokinetic transport through complex wavy microchannel containing porous medium.

Figure 5.2 Keller Box element.

Figure 5.3 Velocity profile (axial velocity vs. transverse coordinate at $\varphi_1 = 0.1$, $\varphi_2 = 0.2, \varphi_3 = 0.3, x = 1.0, t = 0, \frac{\partial p}{\partial x} = 1$ and (a) $U_{HS} = 1, k = 1$, (b) $m = 20, k = 1$, (c) $U_{HS} = 1, m = 20$.

Figure 5.4 Pressure distribution along the length of channel at $\varphi_1 = 0.1, \varphi_2 = 0.2, \varphi_3 = 0.3, l = 2, p_l = p_o = 0, U_{HS} = 5, k = 0.1$.

Figure 5.5 Pressure distribution along the length of channel at $\varphi_1 = 0.1, \varphi_2 = 0.2, \varphi_3 = 0.3, l = 2, p_l = p_o = 0, m = 2, k = 0.1$.

Figure 5.6 Pressure distribution along the length of channel at $\varphi_1 = 0.1, \varphi_2 = 0.2, \varphi_3 = 0.3, l = 2, p_l = p_o = 0, U_{HS} = 5, m = 1$.

Figure 5.7 Initial flow rate against the time at $\varphi_1 = 0.1, \varphi_2 = 0.2, \varphi_3 = 0.3, \frac{\partial p}{\partial x} = 1$ and (a) $U_{HS} = 1, k = 0.1$, (b) $m = 1, k = 0.1$, (c) $U_{HS} = 1, m = 1$.

Figure 5.8 Local wall shear stress along the length of channel at $\varphi_1 = 0.1, \varphi_2 = 0.2, \varphi_3 = 0.3, l = 2, p_l = p_o = 0, t = 0.6, \dot{\gamma} = 0.9$ for (a) $U_{HS} = 1, k = 0.1$, (b) $m = 1, k = 0.1$, (c) $U_{HS} = 1, m = 1$.

Figure 5.9 Stream lines in wave form at $\varphi_1 = 0.1, \varphi_2 = 0.2, \varphi_3 = 0.3, \bar{Q} = 0.9$ for (a) $m = 1, U_{HS} = 1, k = 0.1$, (b) $m = 5, U_{HS} = 1, k = 0.1$, (c) $m = 10, U_{HS} = 1, k = 0.1$, (d) $m = 1, U_{HS} = 1, k = 0.3$, (e) $m = 1, U_{HS} = 1, k = 0.5$, (f) $m = 1, U_{HS} = 5, k = 0.1$, (g) $m = 1, U_{HS} = 10, k = 0.1$.

ξ
Figure 6.1 Geometrical model for non-uniform peristaltic micropump flow. 103

Figure 6.2 Nanoparticle fraction profiles ($\Phi(\eta) vs. \eta$) for various value of $\alpha = 0.0, 1, 2, 3$ at $\phi = 0.5, \xi = 1.0, \delta = 2, t = 0.5, N_i = 1, N_b = 1$. 108

Figure 6.3 Temperature profiles ($\theta(\eta)$ vs. η) for various value of $\alpha = 0.0, 1, 2, 3$ at $\phi = 0.5, \xi = 1.0, \delta = 2, t = 0.5, N_i = 1, N_b = 1$. .. 109

Figure 6.4 Nanoparticle fraction profiles ($\Phi(\eta) vs \eta$) for various value of $\alpha = 0.0, 1, 2, 3$ at $\phi = 0.5, \xi = 1.0, \delta = 2, t = 0.5, N_i = 1, N_b = 1$. .. 110

Figure 6.5 Transverse velocity profiles ($v(\eta)$ vs η) at $\phi = 0.5, \xi = 1.0, \frac{\partial P}{\partial \xi} = 1.0$, $\delta = 2, t = 0.5$ for (a) $N_i = 1.0, N_b = 1.0, Gr_p = 1.0, Gr_f = 1.0$ and $\alpha = 0.0, 0.1, 0.2, 0.3$, (b) $\alpha = 0.1, N_i = 1.0, Gr_f = 1.0, Gr_f = 1.0$ and $N_b = 0.1, 0.2, 0.3, 0.4$, (c) $\alpha = 0.1, N_b = 1.0, Gr_f = 1.0$ and $Gr_f = 1.0$ and $Gr_f = 1.2, 3, 4$, (e) $\alpha = 0.1, N_b = 1.0, N_i = 1.0, Gr_f = 1.0$ and $Gr_f = 1.2, 3, 4$. .. 112

Figure 6.6 Pressure difference vs. axial distance for $\alpha = 0.0, \alpha = 0.05, 1$ and $\phi = 0.8, \delta = 1, N_i = 1, N_b = 0.1, Gr_p = 0.1, Gr_f = 1.0, p_t = p_0 = 0, l = 3.0$ at various instants (a) $t = 0.0, (b) t = 0.25, (c) t = 0.5, (d) t = 0.75$. .. 113

Figure 6.7 Pressure difference vs. axial distance for $N_b = 0.1, 0.2, 0.3$ and $\alpha = 0.1, \phi = 0.8, \delta = 1, N_b = 0.1, Gr_p = 0.1, Gr_f = 0.1, p_t = p_0 = 0, l = 3.0$ at various instants (a) $t = 0.0, (b) t = 0.25, (c) t = 0.5, (d) t = 0.75$. .. 115

Figure 6.8 Pressure difference vs. axial distance for $N_i = 0.1, 2$ and $\alpha = 0.1, \phi = 0.8, \delta = 1, N_b = 0.1, Gr_p = 1, Gr_f = 0.1, p_t = p_0 = 0, l = 3.0$ at various instants (a) $t = 0.0, (b) t = 0.25, (c) t = 0.5, (d) t = 0.75$. .. 116

Figure 6.9 Pressure difference vs. axial distance for $Gr_f = 0.0, 1, 2$ and $\alpha = 0.1, \phi = 0.8, \delta = 1, N_b = 0.1, N_i = 1, Gr_p = 0.1, p_t = p_0 = 0, l = 3.0$ at various instants (a) $t = 0.0, (b) t = 0.25, (c) t = 0.5, (d) t = 0.75$. .. 118
Figure 6.10 Pressure difference vs. axial distance for $Gr_{f} = 0.0, 0.1, 0.2$ and $\alpha = 0.1$, $\phi = 0.8$, $\delta = 1$, $N_{b} = 1$, $N_{f} = 1$, $Gr_{f} = 1$, $p_{i} = p_{o} = 0$, $l = 3.0$ at various instants (a) $t = 0.0$, (b) $t = 0.25$, (c) $t = 0.5$, (d) $t = 0.75$. .. 119

Figure 7.1 Geometry of the peristaltic flow. h_{1} is the transverse displacement of inner (rigid) wall from center line and h_{2} is the transverse displacement of outer (flexible) wall and c is the wave velocity. ... 122

Figure 7.2 Velocity profiles (axial velocity vs. transverse coordinate) at $\phi = 0.5$, $x = 0.5$, $\frac{\partial p}{\partial \xi} = -1.0$ for (a) different value of α_s with $Ha = 0.1$, $\varepsilon = 0.01$, (b) different value of Ha with $\alpha_s = 1.0$, $\varepsilon = 0.01$, (c) different value of ε with $\alpha_s = 1.0$, $M = 0.1$. ... 127

Figure 7.3 Pressure difference across one wavelength vs. averaged flow rate at $\phi = 0.5$ for (a) different value of α_s with $Ha = 1.0$, $\varepsilon = 0.1$, (b) different value of Ha with $\alpha_s = 10.0$, $\varepsilon = 0.1$, (c) different value of ε with $\alpha_s = 10.0$, $Ha = 1.0$. 129

Figure 7.4 Friction force across one wavelength on wall of inner channel vs. averaged flow rate at $\phi = 0.5$ for (a) different value of α_s with $Ha = 0.1$, $\varepsilon = 0.1$, (b) different value of Ha with $\alpha_s = 100$, $\varepsilon = 0.1$, (c) different value of ε with $\alpha_s = 10.0$, $Ha = 1.0$. 130

Figure 7.5 Friction force across one wavelength on wall of outer channel vs. averaged flow rate at $\phi = 0.5$ for (a) different value of α_s at $Ha=1.0, \varepsilon = 0.1$, (b) different value of Ha with $\alpha_s = 100, \varepsilon = 0.1$, (c) different value of ε with $\alpha_s = 10.0$, $Ha = 1.0$. 131

Figure 7.6 Mechanical efficiency vs. ratio of averaged flow rate and maximum averaged flow rate at $\phi = 0.5$ for (a) different value of α_s at $Ha=1.0, \varepsilon = 0.1$, (b) different value of Ha at $\phi = 0.5, \alpha_s = 10.0, \varepsilon = 0.1$, (c) different value of ε at $\alpha_s = 10.0, Ha = 1.0$. ... 132