TABLE OF CONTENTS

CHAPTER-1

SYNOPSIS OF THE THESIS
1.1 Introduction
1.2 Dehydrogenation reactions
 1.2.1 Dehydrogenation of ethylbenzene to styrene
1.3 Hydrogenation reactions
 1.3.1 Hydrogenation of nitrobenzene to aniline
1.4 Simultaneous dehydrogenation and hydrogenation reactions
 1.4.1 Simultaneous dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene
1.5 Aim, scope and objectives of the thesis
1.6 Overview of thesis

CHAPTER-2

REVIEW OF LITERATURE
2.1 Introduction
2.2 Introduction to Nanotechnology
 2.2.1 Properties of nanomaterials
 2.2.1.1 Size effect
 2.2.1.2 Surface plasmon resonance
 2.2.2 Synthesis of Nanomaterials
 2.2.2.1 Top-down approach
 2.2.2.2 Bottom –up approach
 2.2.3 Scope of applications
 2.2.4 Nano materials as catalyst
 2.2.5 Benefits of nanocatalysts in the chemical industry
2.3 Catalysis
 2.3.1 The phenomenon catalysis
2.3.2 Mode of action of catalysts

2.3.2.1 Activity

2.3.2.2 Selectivity

2.3.2.3 Stability

2.3.3 Classification of catalysts

2.3.3.1 Heterogeneous catalysts

2.3.3.2 Homogeneous catalysts

2.3.4 Comparison of homogeneous and heterogeneous catalysis

2.3.5 Heterogeneous catalysis

2.3.5.1 Individual steps in heterogeneous catalysis

2.3.6 Kinetics and mechanisms of heterogeneously catalyzed reactions

2.3.7 The importance of adsorption in heterogeneous catalysis

2.3.8 Mechanisms of heterogeneously catalyzed gas-phase reactions

2.3.9 Factors affecting the catalyst performance

2.3.10 Supported catalysts

2.3.11 Promoters

2.3.12 Catalyst deactivation and regeneration

2.3.13 Causes of catalyst deactivation

2.3.13.1 Catalyst poisoning

2.3.13.2 Thermal processes and sintering

2.3.13.3 Deposits on the catalyst surface

2.3.13.4 Catalyst losses via gas phase

2.4 The transition metals oxides as catalysts

2.5 Dehydrogenation of ethylbenzene to styrene

2.5.1 Oxidative dehydrogenation of ethylbenzene to styrene with different oxidants

2.5.1.1 Molecular oxygen (O₂)

2.5.1.2 Sulfur dioxide (SO₂)

2.5.1.3 Nitrous oxide (N₂O)

2.5.1.4 Carbon dioxide (CO₂)
2.5.2 Role of CO$_2$ as mild oxidant for oxidative dehydrogenation of ethylbenzene 37
2.5.3 Catalysts reported in the literature 38
2.6 Hydrogenation of nitrobenzene to aniline 42
2.6.1 Synthesis of aniline 43
2.6.2 Commercial production of aniline 46
2.6.3 Catalytic hydrogenation of nitrobenzene to aniline 47
2.7 Simultaneous dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene 49
2.8 Experimental 51
 2.8.1 Method of preparation of catalyst 51
 2.8.1.1 Impregnation method 51
 2.8.1.2 Sol-Gel method 51
 2.8.1.3 Aerogels 51
 2.8.1.4 Precipitation method 52
 2.8.1.5 Hydrothermal Method 52
 2.8.1.6 Drying 52
 2.8.1.7 Calcination 53
 2.8.2 Catalyst characterizations 53
 2.8.2.1 Powder X-ray diffraction 55
 2.8.2.2 BET surface area and pore size distribution 57
 2.8.2.3 The Barrett-Joyner-Halenda (BJH) method 58
 2.8.2.4 X-ray photoelectron spectroscopy (XPS) 59
 2.8.2.5 Raman analysis 60
 2.8.2.6 Scanning electron microscopy (SEM) 61
 2.8.2.7 Transmission electron microscopy (TEM) 63
 2.8.2.8 Energy dispersive spectroscopy (EDS) 63
 2.8.2.9 Thermo-gravimetric analysis (TGA) 64
 2.8.2.10 Temperature programmed reduction (TPR) 65
 2.8.2.11 Temperature-programmed desorption of ammonia (NH$_3$-TPD) 67
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8.3 Catalytic activity studies</td>
<td>67</td>
</tr>
<tr>
<td>2.8.3.1 Gas chromatography (GC)</td>
<td>68</td>
</tr>
<tr>
<td>2.8.3.2 Activity measurements (%)</td>
<td>70</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td></td>
</tr>
<tr>
<td>DEHYDROGENATION OF ETHYLBENZENE TO STYRENE</td>
<td>71</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>72</td>
</tr>
<tr>
<td>3.2 Experimental</td>
<td>72</td>
</tr>
<tr>
<td>3.2.1 Catalyst preparation</td>
<td>72</td>
</tr>
<tr>
<td>3.2.1.1 Preparation of TiO$_2$-Al$_2$O$_3$ (TA)</td>
<td>72</td>
</tr>
<tr>
<td>3.2.1.2 Impregnation of MoO$_3$ and V$_2$O$_5$</td>
<td>72</td>
</tr>
<tr>
<td>3.2.2 Catalyst characterization</td>
<td>73</td>
</tr>
<tr>
<td>3.2.3 Catalytic reaction</td>
<td>73</td>
</tr>
<tr>
<td>3.2.4 Activity measurements (%)</td>
<td>73</td>
</tr>
<tr>
<td>PART A: Vapor-phase dehydrogenation of ethylbenzene to styrene over MoO$_3$/TiO$_2$-Al$_2$O$_3$ catalyst using CO$_2$</td>
<td>74</td>
</tr>
<tr>
<td>3.3 Abstract</td>
<td>74</td>
</tr>
<tr>
<td>3.4 Introduction</td>
<td>75</td>
</tr>
<tr>
<td>3.5 Results</td>
<td>77</td>
</tr>
<tr>
<td>3.5.1 Catalyst Characterization</td>
<td></td>
</tr>
<tr>
<td>3.5.1.1 BET Surface area and pore size distribution</td>
<td>77</td>
</tr>
<tr>
<td>3.5.1.2 X-ray diffraction (XRD)</td>
<td>78</td>
</tr>
<tr>
<td>3.5.1.3 H$_2$-temperature programmed reduction (H$_2$-TPR)</td>
<td>79</td>
</tr>
<tr>
<td>3.5.1.4 NH$_3$-temperature programmed desorption (NH$_3$-TPD)</td>
<td>80</td>
</tr>
<tr>
<td>3.5.1.5 X-ray photoelectron spectroscopy (XPS)</td>
<td>81</td>
</tr>
<tr>
<td>3.5.1.6 Field emission scanning electron Microscopy (FE-SEM)</td>
<td>83</td>
</tr>
<tr>
<td>3.5.2 Catalytic activity</td>
<td>84</td>
</tr>
<tr>
<td>3.5.2.1 Effect of temperature and MoO$_3$ loading on the catalytic activity</td>
<td>84</td>
</tr>
<tr>
<td>3.5.2.2 Time on stream studies</td>
<td>86</td>
</tr>
<tr>
<td>3.5.2.3 Catalyst deactivation and regeneration studies</td>
<td>87</td>
</tr>
</tbody>
</table>
3.6 Discussions

3.6.1 Mechanism
3.6.2 Role of TiO$_2$
3.6.3 Role of CO$_2$

3.7 Conclusions

PART B: Vapor-phase dehydrogenation of ethylbenzene to styrene over V$_2$O$_5$ TiO$_2$-Al$_2$O$_3$ catalyst with CO$_2$

3.8 Abstract
3.9 Introduction

3.10 Results

3.10.1 Structural and textural properties of catalysts

3.10.1.1 BET surface area and pore size analysis
3.10.1.2 X-ray diffraction (XRD)
3.10.1.3 H$_2$-temperature programmed reduction (H$_2$-TPR)
3.10.1.4 Raman analysis
3.10.1.5 Field emission scanning electron microscopy (FE-SEM)

3.10.2 Catalytic activity

3.10.2.1 Effect of temperature and V$_2$O$_5$ loading on the catalytic activity
3.10.2.2 Time on stream studies
3.10.2.3 Deactivation of the catalyst

3.11 Discussions

3.11.1 Mechanism
3.11.2 Role of TiO$_2$

3.12 Conclusions

CHAPTER 4

HYDROGENATION OF NITROBENZENE TO ANILINE

4.1 Abstract
4.2 Introduction
4.3 Experimental

4.3.1 Synthesis of Cu@TiO₂ aerogel catalyst

4.3.2 Catalyst characterization

4.3.3 Catalytic reaction

4.3.4 Activity measurements (%)

4.4 Results and discussion

4.4.1 Catalyst characterization

4.4.1.1 BET surface area and pore size distribution

4.4.1.2 X-ray diffraction (XRD)

4.4.1.3 H₂-temperature programmed reduction (H₂–TPR)

4.4.1.4 Field emission scanning electron microscopy and electron dispersive spectroscopy (FE-SEM-EDS)

4.4.1.5 High resolution transmission electron microscopy (HR-TEM)

4.4.2 Catalytic activity

4.5 Conclusions

CHAPTER-5

SIMULTANEOUS DEHYDROGENATION OF ETHYLBENZENE WITH HYDROGENATION OF NITROBENZENE

5.1 Abstract

5.2 Introduction

5.3 Experimental

5.3.1 Catalyst preparations

5.3.2 Catalytic reaction

5.3.3 Activity measurements

5.4 Results & discussions

5.4.1 Catalyst characterizations

5.4.2 Activity studies

5.5 Conclusions

CHAPTER-6