INTRODUCTION

Extension is an on-going process of getting useful information to people (the communication dimension) and then in assisting those people to acquire the necessary knowledge, skills and attitudes to utilize effectively this information or technology (the educational dimension). Generally the goal of the extension process is to enable people to use these skills, knowledge and information to improve their quality of life. The extension function can be used equally well by both the private and public sector, although most general agricultural extension organizations are public sector institutions. It can be combined or integrated with other technology transfer functions, as is the case in most community development programmes. However, most agricultural extension organizations are expected to concentrate on the education function. Extension or non-formal education, as it is sometimes called, can be used effectively in non-agricultural programme areas such as rural health, family planning or community development. In other words, extension can be successfully used by different types of organizations to reach different groups of people with different messages.

Some people tend to equate agricultural extension with the term technology transfer, this is incorrect, because technology transfer includes the additional functions of input supply and agri-services. In addition extension needs to teach farmers management and decision making skills, as new technology inevitably places more demand on these abilities. Also, agricultural
extension should help rural people develop leadership and organizational skills so they can better organize, operate and on participates in co-operatives, credit societies and other support organizations, as well as to participate more fully in the development of their local communities. While many of these activities contribute to technology transfer, not all of them are included under this particular function. Therefore while agricultural extension is an essential and major part of technology transfer (teaching farmers about improved agricultural technology and how to use it).

Agricultural development implies the shift from traditional methods of production to new science based methods of production that includes new technology components (such as new varieties, cultural practices, commercial fertilizers and pesticides etc.), new crops and even new farming systems (such as double cropping in Bangladesh through the inclusion of wheat as a totally new crop grown during the off season). For farmers to adopt these new production technologies successfully, they must first learn about them and then learn how to use them correctly in their farming system.

Agricultural extension is essential to agricultural development. Why are agricultural extension organizations sometimes criticized? People have a wide range of views about the relative value of agricultural extension because in different situations it has been organized in different ways to pursue different objectives. These views range from very positive to
negative, depending upon each observers' knowledge and experience with agricultural extension.

The historical roots of agricultural extension go back to the renaissance when there was movement to relate education to the needs of human life and to the application of science to practical affairs. According to True (1929, p.2), "with the beginnings of the modern science in the sixteenth and seventeenth centuries a desire to use the new knowledge in education soon appeared. Among those who influenced this movement was Rebetail (1483-1553) who would have pupils study nature as well as books and use their knowledge in their daily occupations".

In England Samuel Hartlib (C-1600-70) published a book in 1651 entitled an essay for advancement of Husbandry learning. In the tractate of education published in 1644 and addressed to Hartle Milton followed very largely the plan of education suggested by Rebetails, which involved a very broad study of classical literature, including agriculture as described by Cato-Columella and Varso. out of this came the academies in England which often included in their curriculum studies having practical bearing. Jean Jacques Rousseau (1712-70) dwelt much on the importance of manual and industrial activities in education. (True 1929).

Some of the earliest agricultural schools in Europe were established in Hungary, including one at Zarvas which started in 1779, another at Nagy-Michlos in 1786, and the Georgicon
Academy at Kezthely which was founded in 1797 and was for 50
years, "the model agricultural college at Europe."

During the seventeenth and eighteenth centuries consider-
erable literature on agricultural subjects was developed in a
number of European countries. In France the publication of works
on agriculture was greatly stimulated by the large series of
volumes commonly called the Encyclopedia (1751-70). In Great
Britain there existed agricultural works by about 200 different
authors before 1800. The annuals of agriculture and other useful
arts, a periodical began in London in 1784 by Author Young (1791-
1820), widely promoted the advancement of agriculture in Europe
and America.

The first agricultural society in Germany was estab-
lished in 1764. In France there was an early society of Agricul-
turalists that was succeeded by the Academy of Agriculture of
France which began the publication of proceedings as early as
1761. In Russia the free economical society was established in
1765, with a large experiment farm near St. Petersburg (True,
1929, p. 6-7).

These societies were formed to acquaint their members
with what was being done to prove agriculture to establish local
agricultural organizations and to disseminate agricultural inform-
ation through their publications, newspaper articles and lec-
tures. For example in 1872, the Massachusetts society for promot-
ing Agriculture sent out 1000 copies of a letter to stimulate
farmers to improve agriculture. (True, 1928).

The agricultural societies in North America were responsible for holding fairs not merely for the sale of animals or farm products, but for educational purpose. A notable early example was the lecture by John Lowell at a fair held by the Massachusetts Society at Brighton in 1818.

The use of itinerate teachers to improve agriculture was first started in North America in 1843 when the committee on Agriculture, New York Assembly, suggested that "the legislature might authorize the state agricultural society to employ a practical and scientific farmer to give public lectures throughout the state upon practical and scientific knowledge" (True 1928, p.1). That year itinerate lectures were began by the society.

In United States this system of university extension was introduced through city libraries, especially in Chicago, and St. Louis. By 1890 the American society for the extension of teaching was established. In 1891 the state of New York appropriated $10000 for university extension and in 1892 the universities of Chicago and Wisconsin began organising university extension programmes.

The United States Department of Agriculture (USDA) had fostered several of these thrusts, including farmers institutes which were supported by office of experiment stations and farmers cooperative demonstration work, which was an out growth of the
work started in 1902 by Seaman A. Knapp (1833-1911) and in several southern states. Later the programme had gained momentum. Finally, the office of farm management at USDA was also assigning the agents to districts.

The development of agriculture extension organisations in third world countries was, to a very great extent, a post independence phenomenon, occurring mainly after Second World War. In Latin America and the Caribbean, the majority of national agriculture extension organisations were started in the mid-1950s, with a few established in late 1940's.

In most of the third world countries, the introduction of general agriculture extension programmes were brought about by assistance, particularly from the United States. The lack of local or popular demand for extension type services has been characteristic of experience in most third world countries.

As agriculture is nurturing and nourishing man, making it quite clear that man is dependent on agriculture directly or indirectly. It is responsible for flavouring vigour and vitality in the life of man. The importance of agriculture in the Economic Development of any country, rich or poor is borne out by the fact that it is the primary sector of the country which provides the basis of ingredients necessary for the existence of mankind and also provides most of the raw materials which when transferred into finished product serve as basic necessities of human race.
In a predominantly agrarian economy, agriculture plays a most strategic role from several points of view. In India, being a Agriculture Country, this sector contributes nearly 40 percent of the Net National Product (NNP) provides livelihood to about 60 to 70 percent people despite rapid Industrialisation. Share of agriculture is a crucial indicator of the role it plays in economic development of the country.

Agriculture also provides raw material and manpower to various leading industries i.e. Cotton, Sugar, Paper, Jute, Leather. Agriculture goods like Tea, Oil, Sugar, Tobacco and Spices etc. contribute about 50 percent of the export at present. This percentage is increased considerably if exports of Jute manufactures and Cotton textiles whose 65 percent production cost account for by the raw jute and Cotton. The influence of country rests on the development of agriculture which lends hand directly or indirectly for its prosperity. Hence agriculture should get top priority to grow and flourish.

The revolutionary changes in agriculture demand an urgent need for effective communication set-up to transfer the latest findings or new technology to the farmers. The adoption of agricultural innovations can be channelised by increasing efficiency in communication which can cater to the needs of rural masses in the process of transfer of farm technology. Without the transfer of improved practices agriculture cannot gain ground so an efficient system of timely dissemination of need-based farm technology among farming community weighs, its worth in gold. for
achieving sustained growth in agriculture.

One of the main reasons for agriculture productivity anywhere in the world has been lack of integration of new technology into farming practices of client system. To achieve the high level of production accomplishment, transference of farm technology from research system to ultimate unit of consumption i.e. client system will have to be accelerated. An effective extension system is an important pre-requisite for effective transference of technology and higher production. Several studies have been conducted recently probing into the linking roles of extension system, but the crucial issue of developing an effective extension system competent to insure the quick dissemination of agricultural innovation among the farmers still remains unresolved.

In India, certain extension programmers and organisations have been developed, as a result of experimentations with a number of concepts. In 1952, officially sponsored and administered community development programme was started to implement various rural development projects. The objective was to achieve all round development of village communities with emphasis of agriculture development. However after its working for few years it was realised that programme could not achieve people's participation to an appreciable degree and by and large remained a Government sponsored programme. Hence the Panchayati Raj system was introduced with the underlying doctrine of democratic decentralization of developmental functions.
However the agriculture production still continued to be low. The continued shortages of food for home consumption induced a shift in the programme to pay a greater emphasis on agriculture production.

An Intensive Agriculture District Programme (I.A.D.P) was formulated concentrating on resources and efforts specially in rural areas to achieve the breakthrough in the production. The I.A.D.P started on pilot basis in 1961 in seven selected districts of seven selected states and subsequently extended to nine more states, was the first major step to transfer research findings to the field in the form of small packages of practices through strengthened extension organisation, particularly subject matter specialists and (Village Level Workers) backed by intensive training programme. Yet another programme Intensive Agriculture Area Programme (I.A.A.P) was launched in 1964 over 1084 blocks from 114 districts. Two major points of difference between two programmes was that the later was crop oriented and the staff provided on a reduced scale. The two programmes marked a significant beginning because for the first time fairly a large proportion of crop area in the country possessing adequate production potential was brought under intensive production efforts. These apart, a number of crop oriented schemes and special programmes were also launched simultaneously.

All these programmes often overlapped with the normal extension activities and proved costly and different to replicate
on wide scale. There were reports of even technical inconsistence
between the approach of special programme and general extension
service.

High yielding varieties programme (H.Y.V.P) launched in
1966-67 in the country. The wheat yield increased within a span
of six years and subsequential increase took place in respect of
other crops. Consequent upon this role of state departments of
agriculture tended towards increased emphasis on the logistics of
inputs supplies with less stress on technical and professional
aspects of agriculture. Assessment of performances of individuals
became directly related to the quantity of inputs distributed.
This resulted in concentration of limited number of large farmers
who could consume more inputs.

In seventies the emphasis shifted to the target group
approach based on short comings previous programmes. Productivity
programme was sought to be balanced by an equalitarian concern. A
number of clientele-specific programmes were launched to improve
the economic condition of the Small and Marginal Farmers and the
Landless Agriculture Labourers. (S.F.D.A and M.F.A.L).

In 1974 another specific programme was launched for the
development of the chronically drought affected areas. (D.P.A.P)
Dry Prone Area Programme was meant for poor areas-marginal land
scape representing the arid and semi-arid areas. In addition
variety of special programme has been launched in recent years to
deal with the specific areas.
The foregoing description clearly reveal the extension approaches and techniques evolved in our country time to time have suffered from multiplicity of problems related to the organisation administration and communication. Such problems are common in all developing countries.

The reasons for ineffectiveness of extension programmes have been examined at national level by policy makers, extension specialists and others concerned. World Bank's annual conference held at Nairobi 1970 identified some problems like

a) Lack of single, direct line of technical support and administrative control.

b) Dilution of efforts.

c) Poor mobility of extension workers due to excessive coverage of area.

d) Incompatibility of recommendations.

e) Lack of proper supply of inputs.

Benor and Harrison (1977) reported similar weaknesses as detailed below :-

a) Organisation: At the organisational level there is lack of single and direct line of technical support and administrative control. The extension work not planned systemati-
cally nor supervised adequately. The extension staff at the supervisory level frequently have neither the means nor the inclination to check on the performance.

b) **Dilution of the Effort**: The field level extension worker is made responsible of variety of other activities such as distribution of inputs, administration of credit and small saving programmes, education, public health, regularity of work. Thus the efforts for agricultural development got diluted.

c) **Coverage and mobility**: At all levels the extension functionaries have an excessively large jurisdiction spread over a large area. So the regular contacts between the extension workers and farmers are not maintained which is required for extension work.

d) **Training**: Training of extension functionaries is usually inadequate and out dated. Very little attention is paid to the continuous in service training resulting the poor professional level of extension workers.

Apart from these, lack of proper monitoring and co-ordination with supporting services such as irrigation, credit, input agencies and low moral of extension functionaries are the other problems hindering the effectiveness of existing extension programmes.
The World Bank 1977 also observed the weaknesses of extension programmes one of the weaknesses pointed out by the World Bank as V.D.O's were required to work for at least three Masters - Department of Agriculture, Development Department and Panchayat Samiti and thus Village Extension Workers and Agriculture Extension Officers have problem of intensity and work programmes determination. Both carry out the regular functions and data collection leading to serious credibility gap between extension workers and farmers.

Further physical targets are imposed upon Agriculture Extension Officers and Village Extension Workers were often conflicting and unrealistic. To carry out these programmes each VEW is responsible for 1500 to 2500 farming families because of multiplicity of functions and extension functionaries, of necessity spend most of their time in the office and very little in the field extension work.

In order to take care of the foresaid deficiencies of extension system, "Benor" suggested a new model of extension system known as (Training and Visit System) which was adopted in Chambal Command Area of Rajasthan in first instance during 1974.

The Training and Visit System developed by Danial Benoran (Israel Agronomist) a World Bank consultant envisages overcoming of major shortcomings of extension system prevalent in the developing countries.
T&V SYSTEM: The reorganised agriculture extension methodology aims at ensuring transfer of know-how available at research station to widespread areas through an effective time bound system. Transfer of research findings to farmers' fields under the methodology is sought to be achieved in two broad stages which are described as Training & Visit.

TRAINING: Training provides for transfer of know-how from research scientists, Subject Matter Specialists to the extension workers particularly the Village Extension Workers on a fixed date and time during every fortnight.

VISIT: Visit provides for transfer of know-how from the Extension Workers to the farmers through field programmes of visits once a fortnight. The problems of the farmers that come up during these visits serve as "Feedback" to the Subject Matter Specialists who have to provide solutions immediately or by the next visit.

A Junior Agriculture Assistant is designed to work with a manageable group of farmers divided into 4-8 sub-groups. Each of this sub-group of farmers is being visited by JAA once in a fortnight on the fixed date and place and time the of imparting the technical know-how and guidance in the field operations. During these visits special attention is paid to the contact farmers who are selected. Through these contact farmers improved agriculture technology is disseminated to the rest the of farmers.
T&V system was launched in the Sehayan Irrigation Project in Turkey in 1967 and gradually introduced in Thailand, Burma, Sri Lanka, Indonesia, Nepal and Bangladesh. In India, it was introduced with World Bank’s assistance in command area in Chambal and Rajasthan Channels and Nag Arjun areas in A.P. in June 1974.

Having experienced success at these command areas, the extension system was recognised on the pattern of Training and Visit system in ten states of India. The World Bank sanctioned and allocated $104.20 million for extension projects in these states. The allocation of funds by World Bank as to:

a) Rajasthan $13 million,

b) Orissa $20 million

c) West Bengal $12 million,

d) MP, Kerela and Madhya Pradesh received $10 million each

e) Gujarat $7 million

f) Haryana $6.20 million etc.

Training and Visit system is also known as Benor system, Cluster Scheme and Intensive Agriculture extension system. Ministry of Agriculture and Irrigation (1977) termed as reorganised Agriculture Extension under Training and Visit system. By statesman (1980 June 8) and Reorganised Extension Administration.
Whatever may be the name of the system, aims at ensuring the know how evolved by the Agriculture Scientists to the farmers in wide spread areas through an effective time bound system of systematic Training and Visit and providing back to Scientists through well defined linkages among research, extension and client system.

The working objectives of the system are as follows:

a) Coordinating the research, training and extension activities effectively.

b) To make the research more effective by catering the local needs and present situation.

c) To evolve the intensive training programme on a systematic basis for extension workers and farmers and to ensure the effective supervision and technical support to the Village Extension Workers and Agriculture Extension Officers.

Mr. Danial Benor gave the following basic assumptions to effectively bridge the gap of technology developed by the researchers and its application in farmer's fields as.

1. Co-ordination for increasing production where research training and extension play their respective role effectively so that the best possible use is made of their complementary nature.
2. Reorganisation of extension set up in such a manner that the grass root functionary, the Village Extension Workers is able to meet the farmers often, on a fixed day, identify their problems and help to solve them and for this, reducing his jurisdiction to practical limit.

3. To establish a single line of command from the Government agency responsible for agriculture to the field level worker in order to organise an effective way of closing the gap and to carry out extension systematically and effectively.

4. Making the research effective to cater the local needs and situations.

5. To establish a group of subject matter specialists who will maintain close link between research and trained extension staff effectively to enable them to keep abreast of new developments.

6. To establish a close link between research, extension and farmers so that the problems of the farmers are feedback for solution.

7. To make the extension personal to devote their time exclusively for professional agriculture extension work.

8. To ensure the effective supervision and technical support to extension functionaries.

9. To revise the job chart of (VEW) extension functionary to ensure that he devotes all his time for contacting the
farmers, identifying their problems and guiding and training them for wider adoption of technology.

10. To decentralize and strengthen, applied and adoptive research programmes to enable them to meet the needs of farmers in specific areas.

11. To emphasize reduction in the area of operation of extension functionary (VEW) in terms of 600 to 800 farming families to whom they are expected to reach through selected contact farmers who in turn are supposed to act as second line of extension workers.

12. To evolve the extension training programme on a systematic basis for training extension workers and farmers frequently and effectively.

Specially, the Training and Visit system in J&K State introduced in year 1984-85. However the actual implementation of the programme started in 1985-86 when a staff in the optimum ratio was introduced in all 14 districts of Jammu and Kashmir State. The agriculture is the main stay of J&K State's economy.

There are about 10.34 lack operational holdings in the interior areas of the state. The difference of the crop growing extremely depends upon the altitudes. Near about 35 percent area of the State is irrigated while the rest 65 percent area is Rainfed. The average yield of the different crops is moderate and there is more potential for gaining more yield.
As per the needs of the Training and Visit system in J&K State each Junior Agriculture assistant (or village Extension Workers) has to attend approximately 600 to 800 farming families in Plain areas and in Kandi and in the Hilly areas and in some isolated areas the number of families are 400.

In order to reach these families the Extension Worker would divide them in small groups of 5 to 6 in difficult areas and 8 farmer groups in other plain areas.

For Model on "VISIT SCHEDULE OF JUNIOR AGRICULTURE ASSISTANT" see Model No : 1 on next page.

I to VIII : Visiting group of Junior Agriculture Assistant. (JAA)

FORTNIGHTLY TRAINING :– Fortnightly Training is conducted at Sub-Divisional Agriculture Office level and conducted by sub-divisional subject matter specialists.

AEO MEETING :– This meeting is conducted at Zonal Head Quarter means Agriculture Extension Officers' Office.

EXTRA VISIT DAY :– This day is meant for extra activity. Suppose on a particular group visit date, an official is on leave, then he can attend that group on this day. Besides this official checks the trials, demonstration plots the same day and statements etc. can also be submitted at the same day.
MODEL NO: 1
A MODEL OF VISIT SCHEDULE OF JUNIOR AGRICULTURE ASSISTANT.

"FORTNIGHTLY VISIT"

<table>
<thead>
<tr>
<th>WEEK</th>
<th>MON</th>
<th>TUE</th>
<th>WED</th>
<th>THUR</th>
<th>FRI</th>
<th>SAT</th>
<th>SUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Week</td>
<td>F.T</td>
<td>I group</td>
<td>II group</td>
<td>III group</td>
<td>IV group</td>
<td>Extra visit day</td>
<td>Holiday</td>
</tr>
<tr>
<td>Second Week</td>
<td>Z.L.M</td>
<td>V group</td>
<td>VI group</td>
<td>VII group</td>
<td>VIII group</td>
<td>Extra visit day</td>
<td>Holiday</td>
</tr>
</tbody>
</table>

ABBREVIATIONS USED:
MON : MONDAY
TUE : TUESDAY
WED : WEDNESDAY
THUR : THURSDAY
FRI : FRIDAY
SAT : SATURDAY
SUN : SUNDAY
F.T : Fortnightly Training at Sub-divisional Level.
Z.L.M : Zonal Level Meeting at Zone Level AEO Meeting.
The training under T&V system is imparted to the AEOs and JAAs simultaneously by the subject matter specialists. Each SMS at sub division level is having its specification as of horticulture, agronomy, plant protection etc. They themselves got training from Research Scientists in monthly workshop which is conducted once in a month.

The Sub-Division consists of 40 to 50 JAAs and 4 to 6 Agriculture Extension Officers averagically. The Agriculture Extension Officers and JAAs are given training once in 15 days duration (in fortnight).

In order to reach these families the extension worker would divide them in small groups of 5 to 6 in difficult areas and 8 farmer groups in plain areas. JAA is supervised by Agriculture Extension Officer.

For Model on "ORGANISATIONAL SETUP OF T&V SYSTEM IN J&K STATE" see Model No : 2 on next page.

At Secretariat Level the Agriculture Extension Organisation in J&K state is headed by Agriculture Production Commissioner. The Coordinator of T&V programme also supervises the Secretariat. The Agricultural extension organisation in province is headed by the Directorate of Agriculture. Agriculture is responsible for implementation of Agriculture extension Programme. Joint Directo.
MODEL NO : 2

ORGANISATIONAL SET UP OF T&V SYSTEM IN J&K STATE

DIRECTORATE OF AGRICULTURE

JOINT DIRECTOR AGRICULTURE
(Extension)

JOINT DIRECTOR AGRICULTURE
(Inputs)

Regional Level SMSs

Chief Agriculture Officer

Distt Level SMSs

Distt Agr. Officer
(Extension)

Distt. Agr. Officer
(Inputs)

Sub-Divisional Level SMSs

SDAO
(Sub-Divisional Agriculture Officer)

SDAO

AEO
(Agriculture Extension Officer)

AEO

AEO

AEO

SDAO

JAA
(Junior Agriculture Assistant)

JAA

JAA

JAA

CF
(Contact Farmer)

CF

CF

CF

CF
Inputs responsible for arranging the supply of inputs at province level. The Joint director extension at province level administers all the extension activities.

At District level, Chief Agriculture Officer administers the extension and Soil conservation activities. The District Agriculture officer inputs responds the supply of inputs at Distt level. The District Agriculture Officer extension supervises the extension activities of the District level.

The Sub-Divisional Agriculture Officer administers the entire Sub-Division consisting of 5 to 8 Zones. Agriculture Extension Officer supervises the Junior Agriculture Assistants directly. At grass root level the Junior Agriculture assistant is functionable who visits his area which is divided into groups.

According to set up of the system there are also SMSs from province level to sub-divisional level which imparts trainings to the functionaries.

The main aim of Training and Visit system to teach the farmers how to raise their production per unit area with their own resources of man power and materials with the minimum assistance of the Government. Any organisation or system has to be evaluated periodically to assess its solidness and working ability so as to reshape the entire structure to function effectively.

The findings of the study will be useful for the administration for bringing out desirable changes in the Training and Visit
The main thrust of Training and Visit is on systematic time bound programme of training based on intensive field visits by the extension workers under close supervision.

In the view of the importance, for getting the clear view of training and visit system in Jammu province of J&K state and its impact with reference to attitude, knowledge, feedback, adoption of recommended wheat technology, technological and communicational profile of contact farmers and perception of beneficiaries.

The Researcher undertook the study entitled as:

"To Study the impact of training and visit system on beneficiaries in Jammu province of J&K State".

The Specific Objectives of the study are as under:-

Objectives:-

i. To study the attitude of beneficiaries towards Training and Visit system.

ii. To study the impact with respect to knowledge and adoption of wheat production technology among different status of the farmers.

iii. To study the differential knowledge and adoption of wheat production technology among contact and non-contact farmers.
iv. To study the feedback behaviour of farmers and extension functionaries (AEOs & JAAs) respectively.

v. To study the technological and communicational profile of contact farmers and perception of the beneficiaries (of different of socio-economic status).

**SCOPE AND IMPORTANCE :-** It is an attempt to analyse the impact of Training and Visit system. The finding of the study will be of some help to the planners and administrators involved in Training and Visit system.

The methodology used to study the various aspects of Training and Visit system will be of great value for researchers for studying the similar problems of Training and Visit system in other geographical areas. The results of the study may also serve as the basis for developing various strategies and testing them for their success by other research workers. On the other hand the replication of this study in other areas can be of much use for the improvement of the programme.

**LIMITATION OF THE STUDY:-**

i. The Research worker took Jammu province because of paucity of the time and also its close proximity to Jammu area.

ii. The finding of the study are based on the ability of the
farmers to recall and respond verbally. Hence the objective of the study is restricted to their ability to recall and furnish information without bias or prejudice.

iii. Some of the findings of the study are inferential in nature that require further investigations to be accepted as conclusions.

1st Chapter deals with the Introduction, Problem of Study, Organisational Pattern, Objectives, Scope & Importance and Limitations of the Study.

Second Chapter concerns with Review of Literature which consists of Finding and Conclusions of various researchers which were studied previously.

Third Chapter consists of Description of Tract & Research Methodology which comprises Locale of the Study, Selection of Respondents, Sampling Procedure, Variables, Tools and Techniques of Data Collection and Statistical Analysis and certain definitions of the terms which are essential for the undergoing study.

Fourth Chapter presents Finding and Discussions.

The Summary of the Finding and their Conclusion & Implications are presented in the Fifth Chapter.