CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>V</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>Vi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>X</td>
</tr>
<tr>
<td>SYMBOLS / UNITS</td>
<td>Xiii</td>
</tr>
</tbody>
</table>

Chapter I

INTRODUCTION

1.1 Introduction

1.1.1 Materials for transparent electrodes

1.1.2 Materials for health care

1.2 A prospective material for transparent conducting and antibacterial applications-ZnO

1.3 Properties of ZnO

1.3.1 Structural properties

1.3.2 Electrical properties

1.3.3 Mechanical properties

1.3.4 Optical properties

1.3.5 Antibacterial properties

1.4 Advantages of ZnO

1.5 Applications of ZnO

1.5.1 Disinfection applications

1.5.2 Electronics and electro-technology industries

1.5.3 Photocatalyst

1.5.4 Pharmaceutics, cosmetics and food additives

1.5.5 Sensors

1.5.6 Rubber manufacture

1.5.7 Textile industry
Chapter I

1.6 Origin of the problem
1.7 Objectives of the present work
1.8 Social relevance of the present work
1.9 Review of literature
 1.9.1 Effect of Mg and F doping level on the properties of ZnO nanostructures
 1.9.2 Simultaneously doped ZnO nanostructures for optoelectronic and antibacterial applications

References

Chapter II

II EXPERIMENTAL TECHNIQUES

2.1 Introduction
2.2 Thin film deposition techniques
 2.2.1 Spray pyrolysis technique
 2.2.2 Simplified spray pyrolysis technique using perfume atomizer
2.3 Synthesis process of nanopowders
 2.3.1 Soft chemical route
2.4 Characterization techniques
 2.4.1 Thickness measurement
 2.4.2 Structural properties
 2.4.3 Optical properties
 2.4.4 Electrical properties
 2.4.5 Compositional properties
 2.4.6 Surface morphological properties
 2.4.7 Antibacterial studies

References
Chapter III

III SIMULTANEOUS ENHANCEMENT OF TRANSPARENT CONDUCTING AND ANTIBACTERIAL PROPERTIES OF ZnO FILMS THROUGH FLUORINE DOPING

3.1 Introduction
3.2 Experimental details
 3.2.1 Deposition of ZnO thin films
 3.2.2 Evaluation of antibacterial assay
3.3 Results and discussion
 3.3.1 Structural studies
 3.3.2 Electrical studies
 3.3.3 Optical studies
 3.3.4 Photoluminescence (PL) studies
 3.3.5 FTIR Studies
 3.3.6 Antibacterial studies
 3.3.7 Surface morphological and HR-TEM studies
References

Chapter IV

IV ENHANCEMENT IN THE ELECTRICAL AND ANTIBACTERIAL PROPERTIES OF SPRAYED ZnO FILMS BY SIMULTANEOUS DOPING OF Mg AND F

4.1 Introduction
4.2 Materials and methods
 4.2.1 Film preparation
 4.2.2 Evaluation of antibacterial activity
4.3 Results and discussion
 4.3.1 Electrical studies
 4.3.2 Structural studies
 4.3.3 Optical studies
 4.3.4 Photoluminescence studies
 4.3.5 Surface morphological studies
V EFFECT OF Mg DOPING LEVEL ON THE STRUCTURAL, OPTICAL, SURFACE MORPHOLOGICAL AND ANTIBACTERIAL PROPERTIES OF (Mg+F) DOPED ZnO NANOPOWDERS

5.1 Introduction 126
5.2 Experimental details 127
 5.2.1 Synthesis process 127
 5.2.2 Antibacterial performance 128
5.3 Results and discussion 129
 5.3.1 Structural studies 129
 5.3.2 Photoluminescence studies 130
 5.3.3 Surface morphological studies 131
 5.3.4 FTIR Studies 133
 5.3.5 Antibacterial studies 134
References 139

Chapter VI

VI EFFECT OF F DOPING ON THE PHYSICAL AND ANTIBACTERIAL PROPERTIES OF ZnO NANOPOWDERS

6.1 Introduction 142
6.2 Materials and Methods 143
 6.2.1 Synthesis process 143
 6.2.2 Evaluation of antibacterial performance 143
6.3 Results and discussion 144
 6.3.1 Structural studies 144
 6.3.2 Photoluminescence(PL) studies 147
 6.3.3 Antibacterial studies 149
 6.3.4 Fourier transform infrared (FTIR) studies 153

References 153
6.3.5 Surface morphological studies

References

Chapter VII

VII CONCLUSIONS AND FUTURE OUTLOOK

7.1 Conclusions

7.2 Future outlook

Papers published in reputed refereed Scopus indexed international journals with impact factor as on September 2014

International Conferences in which papers are presented

National/State level Conferences in which papers are presented

International/National/State level Workshops and Seminars attended

Awards received during the course of this study