CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Content</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2.</td>
<td>Objectives of the study</td>
<td>6</td>
</tr>
<tr>
<td>1.3.</td>
<td>Location</td>
<td>6</td>
</tr>
<tr>
<td>1.4.</td>
<td>Physiography</td>
<td>7</td>
</tr>
<tr>
<td>1.5.</td>
<td>Drainage</td>
<td>8</td>
</tr>
<tr>
<td>1.6.</td>
<td>Soil, Natural vegetation and land use.</td>
<td>9</td>
</tr>
<tr>
<td>1.7.</td>
<td>Climate of the study area</td>
<td>9</td>
</tr>
<tr>
<td>1.8.</td>
<td>Surface water and Ground water potential</td>
<td>10</td>
</tr>
<tr>
<td>1.9.</td>
<td>Festival, Population and Industries</td>
<td>10</td>
</tr>
<tr>
<td>1.10</td>
<td>Geological settings of the study area</td>
<td>11</td>
</tr>
<tr>
<td>1.10.1.</td>
<td>Precambrian Rocks- Archaean and Proterozoic basement</td>
<td>12</td>
</tr>
<tr>
<td>1.10.2.</td>
<td>Tertiary and Quaternary formations</td>
<td>13</td>
</tr>
<tr>
<td>1.10.3.</td>
<td>Recent and Sub-Recent deposit</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>REVIEW OF LITERATURE</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>National Status - Review of Literature</td>
<td>15</td>
</tr>
<tr>
<td>2.2.1</td>
<td>During 20th century (Before 2000 A.D)</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2</td>
<td>During 21st century (After 2000 A.D)</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>International Status - Review of Literature</td>
<td>23</td>
</tr>
<tr>
<td>2.3.1</td>
<td>During 20th Century (Before 2000 AD)</td>
<td>23</td>
</tr>
<tr>
<td>2.3.2</td>
<td>During 21st century (After 2000 AD)</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>METHODOLOGY</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>Field Work</td>
<td>56</td>
</tr>
</tbody>
</table>
3.3 Laboratory studies

3.3.1 Micro Thin Section Preparation

3.3.2 X-ray Diffraction Analysis

3.3.3 SEM Analysis

3.3.4 Thermal Analysis

3.3.5 XRF Analysis

3.3.6 ICPMS Analysis

3.3.7 Isotope Analysis

3.3.8 Ground water study

4. FIELD AND PETRO-MINERALOGICAL OBSERVATION

4.1 Characteristics of Primary Limestone

4.1.1 Introduction

4.1.2 Texture of Limestone

4.1.3 Structure of Limestone

4.1.4 Genetical Classification of limestone

4.2 Field observation of calcrite of the study area

4.2.1 Introduction

4.2.2 Field Profile Studies

4.2.3 Macro-Morphology

4.3 Petro-Mineralogy or Micro-Morphology

4.3.1 Micro- Thin Section studies of the study area

4.3.2 XRD-Analysis

4.4 SEM Analysis

4.5 DTA and TG Analysis

4.5.1 History of D.T.A Analysis

4.5.2 DTA and TG Analysis of the study area
5 PETROGRAPHY AND GEOCHEMISTRY OF SOURCE ROCKS, SOILS & GEOCHEMISTRY OF GROUND WATER

5.1. Introduction 104
5.2. Calc-Granulite 104
5.3. White Crystalline limestone 105
5.4. Pink Crystalline Limestone 106
5.5. Hornblende – Biotite gneiss 107
5.6. Charnockite 108
5.7. Pink granite 108
5.8. White or Grey granite 109
5.9. Shell Limestone 110
5.10 Petrography and Geochemistry of Soils 110
 5.10.1 Sandy loamy soil 110
 5.10.2 Black soil 111
 5.20.3 Red (Teri) soil 112
5.11 Niggli Variation Diagram 113
5.12 Geochemistry of ground water 114
5.13 Piper Analysis 114

6. GEOCHEMISTRY OF CALCRETE
6.1. Introduction 116
6.2. Distribution of Major Element Geochemistry of Calcrete 116
6.3. GIS based spatial evaluation of major element geochemistry of calcrete 117
6.4. Major element geochemical observation in profile section and spatial samples. 118
6.5. Depositional environment of calcrete through major element geochemistry 120
 6.5.1. CIA 122
 6.5.2. Salinization 123
 6.5.3. Calcification 123
6.5.4. Clayness 124
6.5.5. Base loss 124
6.5.6. Gleization 125

6.6. Statistical Evaluation 125
6.6.1. Principal Component Analysis 126
6.6.2. Cluster Analysis 129

6.7. Minor and Trace element Geochemistry of Calcrete 130
6.7.1. Distribution of Minor and Trace Element Geochemistry of Calcrete 130
6.7.2. Large Ion Lithophile Elements (LILE) 131
6.7.3. Leaching 134
6.7.4. Ferro-Magnesian Trace Element (FMTE) 134
6.7.5. High Field Strength Elements (HFSE) 138
6.7.6. Minor and Trace Elements in profile section 144

6.8. Statistical evaluation of minor/trace elements 144
6.8.1. Principal Component Analysis 145
6.8.2. Cluster Analysis 147

6.9. Rare Earth Elements (REE) Geochemistry of Calcrete 148
6.9.1. Distribution of REE element Geochemistry of Calcrete 148
6.9.2. Depositional environment of REE 150
6.9.3. La/Sm and (La/Yb)n Ratio 153
6.9.4. Ce anomaly 154

6.10. Statistical Evaluation 154
6.10.1. PCA Analysis 155
6.10.2. Cluster Analysis 157

6.11. Provenance Classification and Oxidation Condition in Regolith calcrete deposits 158
6.11.1. Provenance and Classification 158
6.11.2. Oxidation 162
7 ISOTOPE GEOCHEMISTRY

7.1. Introduction 163
7.2. Primordial Isotopes 164
7.3. Stable Isotopes in regolith carbonate 164
 7.3.1 Carbon Isotopes 164
 7.3.2 Oxygen Isotopes 166
7.4. Stable Isotope Geochemistry of the study area 166
7.5. Stable Isotope and Diagenetic environment 167
7.6. Isotopic, Biogenic activity and Meteoric influence 170

8. PALAEOCLIMATE OF CALCRETE

8.1. Introduction 174
8.2. Climates of India 174
8.3. Climate of Sathankulam Region 175
8.4. Geochemical Proxies 175
8.5. Clay Mineral Proxies 177
8.6. Isotope and climate 179

9. CONCLUSION 181

References 187

Publication