# CONTENTS

Preface i
List of abbreviations vii
Paper published in international journals viii
Papers presented in seminars/conferences/symposia ix
Acknowledgements xi

**Chapter 1 – Introduction** 1–32

1.1 Carbohydrates 1
1.2 Monosaccharides 2
1.3 Stereochemistry of Carbohydrates 2
1.4 Disaccharides 12
1.5 Oligosaccharides 15
1.6 Polysaccharides 15
1.7 Conformational parameters of carbohydrates 16
1.8 Sialic acid – A Significant Carbohydrate 18
1.9 Biological roles and functions of Sialic acids 21
1.10 Influenza Virus 22
1.11 Significant receptors for Influenza virus 24
1.12 Biophysical techniques to study protein–carbohydrate interactions 26
1.13 Hydrogen Bonds 27
1.14 Objectives of the study 31

**Chapter 2 – Computational Methods in Biomolecular Study** 33–73

2.1 Biomolecular Modelling 33

2.2 Molecular Mechanics 35

2.3 Monte Carlo Simulation 36

2.4 Molecular Dynamics Simulation 37

2.5 Basic Verlet algorithm 40

2.6 Leap–frog Verlet algorithm 41

2.7 Velocity–Verlet algorithm 42

2.8 Potential energy functions and force fields used in MD simulations 42

2.9 Bonding energy terms 45

2.10 Bond length deformation energy 45

2.11 Angle deformation energy 46

2.12 Dihedral angle deformation energy 46

2.13 Non–bonded energy terms 48

2.14 Electrostatic Interaction energy 48

2.15 Van der Waals Interaction energy 49

2.16 Molecular dynamics simulations – A historical outlook 51
2.17 Applications of molecular dynamics simulations 52
2.18 Software used in the present study 53
2.19 AMBER 53
2.20 NAnoscale Molecular Dynamics 54
2.21 Visual Molecular Dynamics 55
2.22 UCSF Chimera 56
2.23 Molscript and Raster3D 57
2.24 Molecular Mechanics–Poisson Boltzmann Surface Area 58
2.25 Quantum Mechanical Calculations 59
2.26 Schrodinger Equation – Core of QM 62
2.27 Gaussian09 – A Significant Quantum Chemistry Software 66
2.28 Basis sets 68
2.29 Slater Type Orbitals 69
2.30 Gaussian Type Orbitals 69
2.31 Minimal basis sets 70
2.32 Split–Valence basis sets 71
2.33 Polarization basis sets 72
2.34 Diffuse functions in basis sets 73
Chapter 3 – Algorithm and Program Development for the QM input file preparation from MD trajectory 74–99

3.1 Introduction 74

3.2 Preparation procedure of QM input file from MD trajectory 75

3.3 Program description 76

3.4 Atom fixing procedure for the main chain of amino acid involved in the interaction 77

3.5 Atom fixing procedure for consecutive amino acids involved in the interaction 78

3.6 Atom fixing procedure for the side chain of amino acid involved in the interaction 79

3.7 Work flow of the developed Fortran90 program 79

3.8 Fourth atom fixing technique 81

   3.8.1 First simultaneous equation using bond distance 82

   3.8.2 Second simultaneous equation using bond angle 83

   3.8.3 Third simultaneous equation using dihedral angle 85

3.9 Dihedral angle calculation 95

   3.9.1 Normal vector of the plane ABC 96

   3.9.2 Normal vector of the plane BCD 97

   3.9.3 To decide the sign of dihedral angle 98
Chapter 4 - Geometry Optimization of Neu5Acα(2→3)Gal and Neu5Acα(2→6)Gal along with active site residues of H1 of Influenza A virus

4.1 Introduction 100
4.2 Geometry optimization 103
4.3 Results and Discussion 107
  4.3.1 QM energy calculation and geometry optimization of Neu5Acα(2→3)Gal with H1 using HF/6−31G 107
  4.3.2 QM energy calculation and geometry optimization of Neu5Acα(2→6)Gal with H1 using HF/6−31G 113
  4.3.3 Natural Bond Orbital (NBO) analysis of the optimized structures of H1–N23G and H1–N26G complexes 119
4.4 Conclusions 123

Chapter 5 - Molecular Dynamics Simulation studies on the Binding Specificity of fluorinated sialyldisaccharides Neu5Acα(2→3)Gal and Neu5Acα(2→6)Gal with Influenza Hemagglutinin H1–An Inhibitor Design

5.1 Introduction 124
5.2 Computational details 127
5.3 Results and Discussion 133
  5.3.1 Conformational flexibility of FN23G and FN26G in the binding pocket of H1 133
  5.3.2 Molecular interaction analysis of H1–FN23G complex 134
  5.3.3 Molecular interaction analysis of H1–FN26G complex 140
5.4 Conclusions

Chapter 6 – Summary and Conclusions 150-156

References 157-202

Annexure

Reprints