figures 7.8-7.9d-f. These results can also be confirmed from the figure 7.5.

7.2.5 Conclusions

We have studied the effect of throughflow on overstability of Bénard-Darcy convection by performing a weakly nonlinear stability analysis resulting in the complex Ginzburg–Landau amplitude equation. The following conclusions are made upon the pervious analysis:

1. Upon increasing Pr_D, Nu and MNu increase, hence advances the onset of convection.
2. Upon increasing λ_1, Nu and MNu increase, hence advances the onset of convection.
3. Upon increasing λ_2, Nu and MNu decreases, hence delays the onset of convection.
4. Critical Rayleigh-Darcy number depends on λ_1, λ_2 for oscillatory case, but independent in stationary case.
5. Oscillatory mode exists only when the values of λ_1, λ_2 chosen according to the Eq. (7.2.20).
6. Supercritical pitch fork bifurcation exits for Eq. (7.2.31).
7. Throughflow Q has strongly stabilizing effect on the system for oscillatory case, irrespective of the direction of the flow.
8. Throughflow Q has both stabilizing and destabilizing effects, corresponding to downward and upward directions, for stationary case.
Figure 7.9: Isotherms for various values of time s (a) $s = 0$ (b) $s = 1$ (c) $s = 2$ (d) $s = 3$ (e) $s = 6$ (f) $s = 8$