## CONTENTS

LIST OF FIGURES ............................................. xvii  
LIST OF TABLES ............................................. xxii  
LIST OF BOXES ............................................. xxiii  
ACRONYMS .................................................... xxiv

### CHAPTER 1. INTRODUCTION

1.1. Computer Vision ........................................... 1  
1.2. General Literature Survey ................................. 9  
1.3. Motivation and Problem Definition ...................... 23  
1.4. Objectives Fulfilled ..................................... 23  
1.5. Contribution made in the work ........................... 24  
1.6. Organization of Thesis .................................... 29

### CHAPTER 2. A METHODOLOGY FOR TEXT-BASED MEDICINAL PLANTS’ INFORMATION RETRIEVAL

2.1. Necessity of Medicinal Plant’s Database .................. 31  
2.2. Related work ............................................. 33  
2.3. Design of Database Schema ................................ 35  
2.4. Query Processing ......................................... 42  
2.5. Indian Medicinal Plant database on the Web ............. 51  

Summary

### CHAPTER 3. SEGMENTATION OF MEDICINAL PLANT IMAGES FROM BACKGROUND

3.1. Image Collection and Preprocessing ....................... 53  
3.2. Medicinal Plant image Segmentation ....................... 62  
3.3. Related works ............................................ 63  
3.4. Segmentation of Medicinal Plant image into Canopy and 
    Stem parts .................................................. 67  
3.5. Quantitative Evaluation of Segmentation Accuracy ....... 80  

Summary
CHAPTER 4. FEATURES AND FEATURES’ SELECTION FOR MEDICINAL PLANTS

4.1. Introduction to Plant Features 90
4.2. Related work on Plant image Identification 91
4.3. Hierarchical Classification of Medicinal Plants’ images 98
  4.3.1. Features in Spatial Domain 100
    4.3.1.1. Medicinal Plant recognition based on height feature using Aspect ratio 100
    4.3.1.2. Medicinal Plant recognition based on height feature using a new geometrical feature 107
    4.3.1.3. Colour Feature Extraction Methodologies for Canopy and Stem Identification 110
    4.3.1.4. Texture Feature Extraction Methodologies for Canopy and Stem Identification 117
    4.3.1.5. Color, Edge and Edge direction histogram for representing plant edge pattern 123
    4.3.1.6. Medicinal Plant Recognition by its Parts-Leaves Shape and Margin Features 136
  4.3.2 Frequency domain features 148

Summary

CHAPTER 5. IDENTIFICATION AND CLASSIFICATION OF MEDICINAL PLANTS IMAGES

5.1. Necessity of Medicinal Plant Classification 157
5.2. Related work 158
5.3. Knowledge Based Classification using Aspect Ratio 167
5.4. Recognition and Classification of Medicinal Plants based on New Geometrical features 172
5.5. Recognition and Classification of medicinal plants based on color, edge and edge direction histogram 180
5.6. Recognition and Classification of Canopy and Stem images based on Colour moments and Texture Features 185
5.7. Leaf shape based classification of Medicinal Plants images 190
5.8. Classification based on Spectral Features 197
SUMMARY

CHAPTER 6. IMAGE BASED INFORMATION RETRIEVAL OF INDIAN MEDICINAL PLANTS IMAGES

6.1. Medicinal Plant Image Databases

6.2. Content Based Information Retrieval

6.2.1. Content Based Image Retrieval

6.2.2. Image Based Information Retrieval System

6.3. Related work

6.4. Content Based Image Retrieval system for Medicinal plants images

6.4.1. Histogram Based Plant Image Retrieval

6.4.2. Geometrical feature based Plant image retrieval

6.4.3. Canopy and Stem Based Medicinal Plant image Retrieval

6.4.4. Leaf Image Based Medicinal Plant Retrieval (IBIR)

6.5. Image Based Information Retrieval for Medicinal plants images

Summary

CHAPTER 7. CONCLUSION

7.1 Present work

7.2 Future work

REFERENCES

APPENDIX A. MEDICINAL PLANT IMAGES

APPENDIX B. PLANT LEAFY MASS AND STEM IMAGES

APPENDIX C. LEAVES IMAGES

APPENDIX D. COLOR LOOK-UP TABLE

PUBLICATIONS
# LIST OF FIGURES

| Figure 1.1 | (a) Medicinal plants parts used as extracts of medicine | 02 |
| Figure 1.1 | (b) Herbal plant parts and spices | 02 |
| Figure 1.1 | (c) People searching for the collection of medicinal plants | 03 |
| Figure 1.1 | (d) Ancient way of preparation of herbal medicines | 04 |
| Figure 1.1 | (e) Ayurved herbs and products | 04 |
| Figure 1.2 | Sample medicinal plant images | 08 |
| Figure 1.3 | Sample leaves images with different Base and Apex angle | 08 |
| Figure 1.4 | Schematic Block Diagram of the Proposed Methodology | 25 |
| Figure 2.1 | Medicinal Plant Properties | 36 |
| Figure 2.2 | Sample plant species in the database | 39 |
| Figure 2.3 | Query execution using heuristic rule | 43 |
| Figure 2.4 | (i) $T_1$ and $T_2$ are Query Trees (ii) $T_3$ Efficient Tree | 46 |
| Figure 2.5 | Percentage of Medicinal Plants with categories of growth forms | 50 |
| Figure 2.6 | Classification of medicinal plants based on the plant properties | 50 |
| Figure 2.7 | Classification based on the plant sub properties | 51 |
| Figure 2.8 | Preprocessing Results on Herb, Shrub, Tree image samples | 56 |
| Figure 2.9 | Intensity Histogram | 58 |
| Figure 3.1 | (a) Skew detection and correction | 58 |
| Figure 3.1 | (b) Different possibilities of skew angles and corrections | 58 |
| Figure 3.1 | (c) Preprocessing of acute angle leaf image | 58 |
| Figure 3.1 | (d) Preprocessing of wide obtuse angle leaf image | 58 |
| Figure 3.1 | (e) Base and apex point selection in (i)Acute/obtuse(ii)Wide obtuse leaf image | 60 |
| Figure 3.1 | (f) Base point selection in Wide obtuse leaf image | 61 |
| Figure 3.2 | Color based Segmentation | 71 |
| Figure 3.3 | K-means Segmentation | 73 |
| Figure 3.4 | Curve evolving using level set method and result of canopy and stem segmentation | 75 |
| Figure 3.5 | Threshold based segmentation results | 73 |
| Figure 3.6 | Watershed segmentation results | 80 |
| Figure 3.7 | Comparison of segmentation accuracy of canopy part based on pixel count | 82 |
| Figure 3.8 | Comparison of segmentation accuracy of stem part based on pixel count | 83 |
| Figure 3.9 | Comparison of segmentation accuracy of canopy part based on region | 87 |
| Figure 3.10 | Comparison of segmentation accuracy of stem part based on region | 88 |
### Figure 4.31
Basic leaf shapes (a) Elliptic (b) Obovate (c) Ovate (d) Oblong (e) Lobed

### Figure 4.32
Leaf shapes defined based on geometrical projection value

### Figure 4.33
Leaf base angle computation for three classes

### Figure 4.34
Details of base angle computation

### Figure 4.35
Apex angle types (a) acute (b) obtuse (c) wide obtuse (d) odd-lobed acute apex (e) odd-lobed obtuse apex

### Figure 4.36
Leaf Apex angle computation (a) Acute (b) Obtuse (c) Wide obtuse (d) Acute angle apex with lobes

### Figure 4.37
(a) Coarseness calculation of leaf margin (b) Binary pixel and shape pattern (b) Differential chain code sequence starting from base point

### Figure 4.38
(a) Crenate (b) Dentate (c) Serrate (d) Entire

### Figure 4.39
Leaf margin pattern for sample leaf images

### Figure 5.1
Receiver operating characteristic curve

### Figure 5.2
Classification rate of medicinal plants using aspect ratio

### Figure 5.3
A Sample Neuron

### Figure 5.4
Architecture of Artificial Neural Network

### Figure 5.5
Training performance of the neural network using geometrical Feature

### Figure 5.6
Comparative analysis of Classification rate (%) with level set and K-means segmentation with other classifiers

### Figure 5.7
Classification accuracy of different medicinal plant species

### Figure 5.8
Color histogram based classification accuracy in RGB

### Figure 5.9
Edge histogram texture features classification accuracy

### Figure 5.10
Edge direction histogram texture features classification accuracy

### Figure 5.11
Combined color and edge/texture features classification accuracy

### Figure 5.12
Training performance of the neural network

### Figure 5.13
(a) Classification accuracies of canopy images using color and texture (b) Classification accuracies of stem images using color and texture features

### Figure 5.14
Classification accuracy of medicinal plant species based on leafy mass

### Figure 5.15
Classification accuracy of medicinal plant species based on stem

### Figure 5.16
Classification accuracy based on widest part of leaf

### Figure 5.17
Classification rate of Sample plant species Leaves images
Figure 5.18  
(a) Classification accuracy based on Base angle  
(b) Classification accuracy of sample plant species based on base angle  

Figure 5.19  
(a) Classification Accuracy based on Apex angle  
(b) Classification rate of sample plant species based on Apex angle  

Figure 5.20  
(a) Classification accuracy based on margin types  
(b) Classification accuracy of sample plant species leaf based on margin  

Figure 5.21  
Classification accuracy of plant species based on combined Features  

Figure 5.22  
Classification accuracy based on Fourier Descriptors  

Figure 5.23  
Comparative analysis of Shape Descriptors  

Figure 5.24  
Classification accuracy based on Texture Descriptors  

Figure 5.25  
Comparative analysis of Medicinal Plants using combined Features  

Figure 6.1  
Sample images of Medicinal Plant Database  

Figure 6.2  
Block diagram of Content Based Information Retrieval System  

Figure 6.3  
Block diagram of Histogram based plant image retrieval  

Figure 6.4  
(a) Query image of Herb (Catharanthus roseus)  
(b) Retrieved herb images  
(c) Herb image having highest similarity with query  

Figure 6.5  
(a) Query image of Shrub (Calotropis gigantea)  
(b) Retrieved Shrub images  
(c) Shrub image having highest similarity with query  

Figure 6.6  
(a) Query image of Tree (Azadirachta indica)  
(b) Retrieved Tree images  
(c) Tree image having highest similarity with query  

Figure 6.7  
Retrieval Efficiency based on Edge Histogram (EH)  

Figure 6.8  
Retrieval Efficiency based on Edge Direction Histogram (EDH)  

Figure 6.9  
Retrieval accuracy based on combined feature  

Figure 6.10  
Recall Efficiency based on Reduced EH and EDH Histogram Feature sets (a) ED (b) AD (c) MSE  

Figure 6.11  
Precision-Recall graph Using EH with three distance measures  

Figure 6.12  
Precision-Recall graph Using EDH with three distance measures  

Figure 6.13  
Precision-Recall graph Using EH and EDH on Herbs, Shrubs and Trees using only MSE  

Figure 6.20  
(a) Classification accuracy based on margin types  
(b) Classification accuracy of sample plant species leaf based on margin  

Figure 6.21  
Classification accuracy of plant species based on combined Features  

Figure 6.22  
Classification accuracy based on Fourier Descriptors  

Figure 6.23  
Comparative analysis of Shape Descriptors  

Figure 6.24  
Classification accuracy based on Texture Descriptors  

Figure 6.25  
Comparative analysis of Medicinal Plants using combined Features  

Figure 6.1  
Sample images of Medicinal Plant Database  

Figure 6.2  
Block diagram of Content Based Information Retrieval System  

Figure 6.3  
Block diagram of Histogram based plant image retrieval  

Figure 6.4  
(a) Query image of Herb (Catharanthus roseus)  
(b) Retrieved herb images  
(c) Herb image having highest similarity with query  

Figure 6.5  
(a) Query image of Shrub (Calotropis gigantea)  
(b) Retrieved Shrub images  
(c) Shrub image having highest similarity with query  

Figure 6.6  
(a) Query image of Tree (Azadirachta indica)  
(b) Retrieved Tree images  
(c) Tree image having highest similarity with query  

Figure 6.7  
Retrieval Efficiency based on Edge Histogram (EH)  

Figure 6.8  
Retrieval Efficiency based on Edge Direction Histogram (EDH)  

Figure 6.9  
Retrieval accuracy based on combined feature  

Figure 6.10  
Recall Efficiency based on Reduced EH and EDH Histogram Feature sets (a) ED (b) AD (c) MSE  

Figure 6.11  
Precision-Recall graph Using EH with three distance measures  

Figure 6.12  
Precision-Recall graph Using EDH with three distance measures  

Figure 6.13  
Precision-Recall graph Using EH and EDH on Herbs, Shrubs and Trees using only MSE
Figure 6.14  Average retrieval response time 236
Figure 6.15  (a) Retrieved herb images 238
(b) Herb image having highest similarity with query 238
Figure 6.16  (a) Retrieved Shrub images 239
(b) Shrub image having highest similarity with query 239
Figure 6.17  (a) Retrieved Tree images 240
(b) Tree image having highest similarity with query 240
Figure 6.18  Retrieval accuracy based on geometrical feature 241
Figure 6.19  Precision-Recall graph based on geometrical feature using MSE 242
Figure 6.20  (a) Query image of Herb Canopy and Stem( Catharanthus roseus) 243
(b) Retrieved images of Canopy and Stem of Herb 243
(c) Herb canopy and stem image having highest similarity 243
Figure 6.21  (a) Query image of Shrub Canopy ( Calotropis Gigantea) 244
(b) Retrieved images of Shrubs Canopy 244
(c) Shrub canopy image having highest similarity 244
Figure 6.22  (a) Query image of Tree Canopy and Stem( Azadirachita indica) 244
(b) Retrieved images of Canopy and Stem of Tree 245
(c) Tree Canopy and stem image having highest similarity 245
Figure 6.23  Retrieval Efficiency of Sample Plant Species 245
Figure 6.24  Precision-Recall of plant species based on color features 246
Figure 6.25  Precision-Recall of plant species based on texture features 246
Figure 6.26  Sample retrieval results on Almond (Prunus Domestica) leaf image with k = 20, k = 30 249
Figure 6.27  Average Precision v/s Number of Retrieved Images based on Widest part 250
Figure 6.28  Average Precision v/s Number of Retrieved Images based on Base angle 251
Figure 6.29  Average Precision v/s Number of Retrieved images based on Apex angle 252
Figure 6.30  Average Precision v/s Number of Retrieved images based on Margin 253
Figure 6.31  Performance of leaves samples using Precision-Recall values 253
Figure 6.32  Retrieval images of Herb, Shrub and Tree 254
Figure 6.33  Block diagram of proposed IBIR 256
Figure 6.34  (a) Sample Interface for Plant image Retrieval 257
(b) Sample interface for plant information Retrieval 257
Figure 6.35  (a) Text information of retrieved Herb image 258
(b) Text information of retrieved Shrub image 259
(c) Text information of retrieved tree image 260