Table of contents

Chapter I ……2-15

- **Focus**
 1.1. Focus
 1.2. Worldwide occurrence
 1.3. Geochemistry and Mobility of Arsenic
 1.4. Arsenic Contamination from different sources
 1.5. Hydrogeochemistry and Redox behavior of Arsenic
 1.6. Arsenic in the BDP
 1.7. Measurement of groundwater arsenic using commonly practiced method by considering critical measurement factor, hazardness and cost
 1.8. Toxic metals in groundwater and their exposure
 1.9. Study Area
 1.10. Climate of the Study area
 1.11. Groundwater chemistry of the Study sites
 1.12. Health Implications
 1.13. Options for mitigation
 1.14. Rationale of the Thesis

Chapter II ……16-19

- **Objectives and Work Plan**
 2.1. Objectives
 2.2. Work plan

Chapter III ………………………………………………………………………………………………………20-28

- **Literature Review**
 3.1. Source of As in the aquifers of Bengal Basin
 3.2. As mobilization hypothesis in the aquifers of Bengal Basin
 3.2.1. Oxidation Hypothesis
3.2.2. Iron Reduction Hypothesis

3.2.3. Competitive Ion Exchange

3.3. Influence of Anthropogenic activity

3.4. Role of Organic matter

3.5. As distribution in vertical and temporal pattern in the aquifers of Bengal Basin BDP

Chapter IV ..29-43

✔ Critical assessment of ENVIRO-ECO-ANALYTICAL factors of existing laboratory arsenic detection methods in India

4.1. Introduction

4.2. Materials and Methods

4.2.1. Study area

4.2.2. Sample collection and preservation

4.2.3. Locally practiced As determination methods and related protocols

4.2.3.1. Iodometric-colorimetric method (AM1)

4.2.3.2. SDDC method (AM2)

4.2.3.3. Molybdenum blue method (AM3)

4.2.3.4. AAS method (AM4)

4.2.4. Statistical analysis

4.3. Results and discussion

4.3.1. Comparative analytical efficiency (ANALYTICAL factor)

4.3.2. Effect of various methods and used chemicals on environment (ENVIRO factor)

4.3.3. Cost Components (ECO factors)

4.3.4. Statistical approach to finalize the optimized method

4.4. Conclusions
Chapter V ……………………………………………………………………………44-107

✓ (A) Groundwater chemistry and redox processes: Depth dependent arsenic release mechanism

 5.1. Introduction

 5.2. Materials and Methods
 5.2.1 Monitoring Site
 5.2.2. Well Construction
 5.2.3. Sampling and analytical techniques

 5.3. Results
 5.3.1 Groundwater hydrochemistry
 5.3.2 Thermodynamic calculations
 5.3.3 Statistical evaluation

 5.4. Discussion

 5.5. Conclusions

✓ (B) Understanding of shallow aquifer arsenic and iron variation with regard to Vertical and Temporal pattern

 5.6. Study sites and piezometer details

 5.7. General hydrochemistry of the monitoring sites

 5.9. Temporal variation

 5.10. As and Fe variation: A geochemical approach

 5.11. Conclusions

✓ (C) Geochemical aspect and long term monitoring of arsenic concentration in multilevel piezometers under the influence of local recharge (Pond)

 5.12. Introduction

 5.13 Materials and Methods
 5.13.1 Sampling of Groundwater and Pond water
 5.13.2. Analysis of groundwater and pond water
5.13.3. Result and Discussion

5.13.3.1. Hydraulics of the piezometers and pond water at the monitoring site

5.13.3.2. Isotope geochemistry

5.13.3.3. General Hydrogeochemistry of the aquifer and Pond/Surface water

5.13.3.4. Pond/Surface water quality

5.13.3.5. Correlation study between shallow aquifer (well-A and well-B) with pond

5.13.3.6. Vertical distribution of As and other redox species

5.13.3.7. Assessment of pond water infiltration to the wells based on Cl mass balance

5.13.3.8. Variation of DOC and HCO$_3$ in well-B vs pond water

5.14. Conclusions

Chapter VI ..108-125

Assessment of toxic metals in groundwater and saliva in an arsenic affected area of West Bengal, India: A pilot scale study

6.1. Introduction

6.2. Materials and Methods

6.2.1. Study area and sample collection

6.2.2. Sample analysis

6.2.3. Statistical analysis

6.3. Results and Discussion

6.3.1. Groundwater portability and health

6.3.2. Elemental composition in saliva

6.4. Conclusions
Chapter VII ...126-130

Conclusion & Future scope of work

✓ References

Summary...152-155

Acknowledgements ..156-157

List of Figures ...158-160

List of Tables ...161-162

List of Abbreviations ..163-164

List of Publications ..165-167