DECLARATION

I hereby declare that the Ph. D. thesis entitled “PROPERTIES AND PROSPECTS OF R–PHYCOERYTHRIN FROM PORTIERIA HORNEMANNII (LYNGBYE) SILVA” submitted to the University of Madras under the Supervision of Prof. R. RENGASAMY, Director, Centre for Advanced Studies in Botany and the thesis has not formed previously the basis for the award of any degree, diploma, associateship, titles in this or any other University or other similar institution of Higher learning.

(N. SENTHILKUMAR)

Countersigned by

Prof. R. RENGASAMY
Director
Centre for Advanced Studies in Botany
University of Madras
Maraimalai Campus, Guindy
Chennai-600 025
Dedicated to My Family
CONTENTS

LIST OF ABBREVIATIONS/ ACRONYMS i-vi
LIST OF FIGURES vii-x
LIST OF TABLES xi
INTRODUCTION 1
REVIEW OF LITERATURE 4
MATERIAL AND METHODS 25

RESULTS 73

Total carbohydrate content of red seaweeds 73
Total protein content of red seaweeds 73
Total lipid content of red seaweeds 74
Photosynthetic pigments – Chlorophyll 74
Photosynthetic pigments – Phycobiliproteins 75
Taxonomy of Portiera hornemannii 76
Moisture and Ash content of Portiera hornemannii 77
Purification of R–Phycoerythrin from Portiera hornemannii by Q–Sepharose column chromatography 77
Effect of different pH on R–Phycoerythrin 78
Effect of different temperatures on R–Phycoerythrin 78
Effect of different inhibitors on R–Phycoerythrin 78
Effect of different metal ions on R–Phycoerythrin 78
Effect of different solvents on R–Phycoerythrin 79
Effect of different preservatives on R–Phycoerythrin 79
Thermal properties of R–Phycoerythrin 80
Antioxidant properties of R–Phycoerythrin 80
UV–Visible spectral properties of R–Phycoerythrin 80
Circular dichroism spectral properties of R–Phycoerythrin 81
Fluorescence emission spectral properties of R–Phycocerythrin 81

FT–IR spectral properties of R – Phycoerythrin 81

FT–Raman spectral properties of R–Phycocerythrin 82

Electron Paramagnetic Resonance spectral properties of R–Phycocerythrin 82

Electron Microscopic studies on R–Phycocerythrin – SEM and TEM 82

Electron Microscopic studies on R–Phycocerythrin – AFM 83

Molecular weight of R–Phycocerythrin by Native–PAGE 83

Molecular weight of individual subunits of R–Phycocerythrin by SDS–PAGE 83

Two dimensional electrophoresis of R–Phycocerythrin 83

HPLC analysis of R–Phycocerythrin 83

MALDI–TOF mass spectral properties of R–Phycocerythrin 84

N–terminal sequencing of R–Phycocerythrin 84

In vitro anticancer studies - Effect of R–Phycocerythrin on human cancer cell lines HepG2 and A549 85

Analysis of cell viability 85

Evaluation of Cytotoxicity and determination of IC_{50} value 85

Lactate dehydrogenase assay 85

Morphological study 86

Apoptosis assay 86

Flowcytometry assay 86

In vivo anticancer studies - Effect of R–Phycocerythrin on Hepato Cellular Carcinoma (HCC) induced male wistar albino rats 87

Body and liver weight of experimental animal groups 87

Liver morphology 88

Liver histopathology 88

Haematological constituents of blood sample 89
Biochemical constituents of serum sample 90
Marker enzymes 91
Lipid profile of liver homogenate 92
Enzymatic antioxidants of liver homogenate 94
Non-enzymatic antioxidants of liver homogenate 95
Lipid peroxidation of liver homogenate 96

DISCUSSION 97

SUMMARY 124

ACKNOWLEDGEMENT

REFERENCES i-xxii
LIST OF ABBREVIATIONS/ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviations/Acronyms</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>2–DE</td>
<td>2-Dimensional Gel Electrophoresis</td>
</tr>
<tr>
<td>A549</td>
<td>Aadenocarcinomic human alveolar basal epithelial cell lines</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic Force Microscopy</td>
</tr>
<tr>
<td>AgNO₃</td>
<td>Silver nitrate</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine transaminase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>ANALYSIS OF VARIANCE</td>
</tr>
<tr>
<td>AO</td>
<td>Acridine Orange</td>
</tr>
<tr>
<td>APC</td>
<td>Allophycocyanin</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate transaminase</td>
</tr>
<tr>
<td>B–PE</td>
<td>Bangiales Phycoerythrin</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>Calcium chloride</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>CBB</td>
<td>Coomassie Brilliant Blue</td>
</tr>
<tr>
<td>CD</td>
<td>Circular Dichroism</td>
</tr>
<tr>
<td>Chl. a</td>
<td>Chlorophyll a</td>
</tr>
<tr>
<td>Chl. d</td>
<td>Chlorophyll d</td>
</tr>
<tr>
<td>cm</td>
<td>centi metre</td>
</tr>
<tr>
<td>CoCl₂</td>
<td>Cobalt chloride</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>COX2</td>
<td>Cyclooxygenase 2</td>
</tr>
<tr>
<td>C– PE</td>
<td>Cyanophycean Phycoerythin</td>
</tr>
</tbody>
</table>
CuSO₄ – Copper sulphate
Da – Dalton
DAM – Diacetyl monoxime
DEAE-Cellulose – Diethylaminoethyl cellulose
DEN – DiethylNitrosamine
dL – deci Litre
DMSO – Dimethyl sulfoxide
DNA – Deoxyribo Nucleic Acid
DNPH – 2,4-dinitrophenylhydrazine
DPPH – 2,2-diphenyl-1-picrylhydrazyl
DSC – Differential Scanning Calorimetry
DTNB – 5,5′-dithiobis-(2-nitrobenzoic acid)
DTT – Dithiothreitol
DXR – Doxorubicin
EB – Ethidium Bromide
EDTA – Ethylene diamine tetraacetic acid
EEZ – Exclusive Economic Zone
ELISA – Enzyme Linked Immuno Sorbent Assay
EM – Electron Microscopy
EPR – Electron Paramagnetic Resonance Spectroscopy
FACS – Fluorescence Activated Cell Sorting
FAO – Food and Agriculture Organization
FT–IR – Fourier Transform – Infrared Spectroscopy
FT – Raman – Fourier Transform – Raman Spectroscopy
g – gram
G₀ Phase – Gap 0 Phase
G₁ Phase – Gap 1 Phase
G₂ Phase – Gap 2 Phase
GPx – Glutathione Peroxidase
GR – Glutathione Reductase
GSH – Reduced Glutathione
GSSG – Glutathione disulfide
H₂O₂ – Hydrogen peroxide
H₂SO₄ – Sulphuric acid
Hb – Haemoglobin
HB100 – Human Breast cells
HCC – Hepato Cellular Carcinoma
HCl – Hydrochloric acid
HDL – High Density Lipoprotein
HepG2 – Human hepatocellular carcinoma cell line
HgCl₂ – Mercuric chloride
HPLC – High Performance Liquid Chromatography
h – Hour
IAEC – Institutional Animal Ethics Committee
IC₅₀ – Inhibitory Concentration by 50%
IDA – Iodoacetamide
IgE – Immunoglobulin E
IU – International Unit of Proteins
kDa – kilo Dalton
km – kilo metres
KOH – Potassium Hydroxide
L – Litre
Lat. N’ – Latitude North
LDH – Lactate dehydrogenase
LDL – Low Density Lipoprotein
Long. E’ – Longitude East
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPO</td>
<td>Lipid peroxidation</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significant Difference</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>M</td>
<td>Phase – Mitotic Phase</td>
</tr>
<tr>
<td>mL</td>
<td>milli Litre</td>
</tr>
<tr>
<td>mM</td>
<td>milli Molar</td>
</tr>
<tr>
<td>mA</td>
<td>micro Ampere</td>
</tr>
<tr>
<td>MALDI – TOF</td>
<td>Matrix Assisted Laser Desorption and Ionization – Time Of Flight</td>
</tr>
<tr>
<td>MASCOT</td>
<td>Matrix Science</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>MgSO4</td>
<td>Manganese sulphate</td>
</tr>
<tr>
<td>min.</td>
<td>minute</td>
</tr>
<tr>
<td>mm</td>
<td>milli metre</td>
</tr>
<tr>
<td>MnCl2</td>
<td>Manganese chloride</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-(N-morpholino) propane sulfonic acid</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>MWCO</td>
<td>Molecular Weight Cut Off</td>
</tr>
<tr>
<td>N-Terminal</td>
<td>Amino terminal</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>Na2CO3</td>
<td>Sodium carbonate</td>
</tr>
<tr>
<td>Na2S2O3</td>
<td>Sodium Thio Sulphate</td>
</tr>
<tr>
<td>NADH</td>
<td>Reduced Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADPH</td>
<td>Reduced Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NATIVE –PAGE</td>
<td>Non –denaturing Poly Acrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Centre for Biotechnology Information</td>
</tr>
<tr>
<td>NCCS</td>
<td>National Centre for Cell Sciences</td>
</tr>
<tr>
<td>NH₄HCO₃</td>
<td>Ammonium bicarbonate</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>PBP’s</td>
<td>Phycobiliprotein’s</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PEG</td>
<td>Poly Ethylene Glycol</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>psi</td>
<td>pound-force per square inch</td>
</tr>
<tr>
<td>RBC</td>
<td>Red Blood Corpuscles</td>
</tr>
<tr>
<td>RBL-2H3 Cell line</td>
<td>Rat basophilic leukemia</td>
</tr>
<tr>
<td>Rm</td>
<td>Relative mobility</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>R-PE</td>
<td>Rhodophycean - Phycoerythrin</td>
</tr>
<tr>
<td>rpm</td>
<td>revolution per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>Rt</td>
<td>Retention time</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulphate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium Dodecyl Sulphate - Poly Acrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>sec.</td>
<td>Second</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SGOT</td>
<td>Serum Glutamate Oxaloacetate Transaminase</td>
</tr>
<tr>
<td>SGPT</td>
<td>Serum Glutamate Pyruvate Transaminase</td>
</tr>
<tr>
<td>SOD</td>
<td>Super Oxide Dismutase</td>
</tr>
<tr>
<td>SPM</td>
<td>Scanning Probe Microscopy</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Product and Service Solutions (previously Statistical Package for Social Sciences)</td>
</tr>
<tr>
<td>TBA</td>
<td>Thiobarbituric acid</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetra methyl ethylene diamine</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermal Gravimetric Analysis</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>USD</td>
<td>United States Dollar</td>
</tr>
<tr>
<td>UV – Visible</td>
<td>Ultra Violet – Visible Spectrophotometer</td>
</tr>
<tr>
<td>v/v</td>
<td>volume by volume</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very Large Density Lipoprotein</td>
</tr>
<tr>
<td>w/v</td>
<td>weight by volume</td>
</tr>
<tr>
<td>WBC</td>
<td>White Blood Corpuscles</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>wt.</td>
<td>weight</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>μm</td>
<td>micrometre</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Map showing Kilakarai</td>
</tr>
<tr>
<td>2.</td>
<td>Collection site at Kilakarai</td>
</tr>
<tr>
<td>3.</td>
<td>Total carbohydrate content of selected red seaweeds</td>
</tr>
<tr>
<td>4.</td>
<td>Total protein content of selected red seaweeds</td>
</tr>
<tr>
<td>5.</td>
<td>Total lipid content of selected red seaweeds</td>
</tr>
<tr>
<td>6.</td>
<td>Chl. a content of selected red seaweeds</td>
</tr>
<tr>
<td>7.</td>
<td>Chl. d content of selected red seaweeds</td>
</tr>
<tr>
<td>8.</td>
<td>Accessory pigments of selected red seaweeds</td>
</tr>
<tr>
<td>9.</td>
<td>Thallus of Portieria hornemannii (Lyngbye) Silva</td>
</tr>
<tr>
<td>10.</td>
<td>Purified R–Phycoerythrin</td>
</tr>
<tr>
<td>11.</td>
<td>R–Phycoerythrin in phosphate buffer (200 ppm, pH 7.2)</td>
</tr>
<tr>
<td>12.</td>
<td>Effect of different pH on the activity of R–Phycoerythrin of Portieria hornemannii</td>
</tr>
<tr>
<td>13.</td>
<td>Effect of different temperatures on the activity of R–Phycoerythrin of Portieria hornemannii</td>
</tr>
<tr>
<td>14.</td>
<td>Effect of different concentrations of EDTA on activity of R–Phycoerythrin of Portieria hornemannii</td>
</tr>
<tr>
<td>15.</td>
<td>Effect of different concentrations of DMSO on activity of R–Phycoerythrin of Portieria hornemannii</td>
</tr>
<tr>
<td>16.</td>
<td>Effect of different concentrations of β–mercaptoethanol on activity of R–Phycoerythrin of Portieria hornemannii</td>
</tr>
<tr>
<td>17.</td>
<td>Effect of different concentrations of SDS on activity of R–Phycoerythrin of Portieria hornemannii</td>
</tr>
<tr>
<td>18.</td>
<td>Effect of different concentrations of Manganese chloride on activity of R–Phycoerythrin of Portieria hornemannii</td>
</tr>
<tr>
<td>19.</td>
<td>Effect of different concentrations of Cobalt chloride on activity of R–Phycoerythrin of Portieria hornemannii</td>
</tr>
</tbody>
</table>
20. Effect of different concentrations of Mercuric chloride of activity of
 R–Phycoerythrin of Portieria hornemannii
21. Effect of different concentrations of Copper sulphate on activity of
 R–Phycoerythrin of Portieria hornemannii
22. Effect of different concentrations of Manganese sulphate on activity of
 R–Phycoerythrin of Portieria hornemannii
23. Effect of different concentrations of Calcium chloride on activity of
 R–Phycoerythrin of Portieria hornemannii
24. Effect of different organic solvents on activity of R–Phycoerythrin of
 Portieria hornemannii
25. Effect of different preservatives on activity and stability of
 R–Phycoerythrin of Portieria hornemannii under 0 ± 5°C
26. Effect of different preservatives on activity and stability of
 R–Phycoerythrin of Portieria hornemannii under 30 ± 5°C
27. Thermal Gravimetric properties of R–Phycoerythrin of
 Portieria hornemannii
28. Differential Scanning Calorimetric properties of R–Phycoerythrin of
 Portieria hornemannii
29. Total reducing power of R–Phycoerythrin of Portieria hornemannii
30. Free radical scavenging activity of R–Phycoerythrin of
 Portieria hornemannii
31. Total antioxidant activity of purified R–Phycoerythrin of
 Portieria hornemannii
32. UV–Visible Spectrum of R–Phycoerythrin of Portieria hornemannii
33. CD Spectrum of Buffer
34. CD Spectrum of R–Phycoerythrin of Portieria hornemannii
35. Secondary structure of R–Phycoerythrin after analysis
36. Fluorescence Emission Spectrum of R–Phycoerythrin of
 Portieria hornemannii
37. FT–IR Spectrum of R–Phycoerythrin of Portieria hornemannii
38. FT–Raman Spectrum of R–Phycoerythrin of Portieria hornemannii
39. EPR Spectrum of R–Phycoerythrin of Portieria hornemannii
40. Scanning Electron Micrograph of R–Phycoerythrin of *Portieria hornemanni*

41. Transmission Electron Micrograph of R–Phycoerythrin of *Portieria hornemanni*

42. Particle size distribution corresponding to R–Phycoerythrin of *Portieria hornemanni*

43. 2D view of Atomic Force Micrograph of R–Phycoerythrin of *Portieria hornemanni*

44. 3D view of Atomic Force Micrograph of R–Phycoerythrin of *Portieria hornemanni*

45. Molecular Mass determination of R–Phycoerythrin on NATIVE–Gel Electrophoresis under non-reducing condition (10% w/v)

46. Molecular Mass determination of R–Phycoerythrin on SDS–Gel Electrophoresis under reducing condition (12% w/v)

47. Two Dimensional Gel Electrophoresis of R–Phycoerythrin of *Portieria hornemanni*

48. HPLC Profile of Blank

49. HPLC profile of R–Phycoerythrin of *Portieria hornemanni*

50. MALDI-TOF Spectrum of α1 subunit of R–Phycoerythrin of *Portieria hornemanni*

51. MALDI-TOF Spectrum of α2 subunit of R–Phycoerythrin of *Portieria hornemanni*

52. MALDI Mass Spectrum of β1 subunit of R–Phycoerythrin of *Portieria hornemanni*

53. MALDI Mass Spectrum of β2 subunit of R–Phycoerythrin of *Portieria hornemanni*

54. MALDI–TOF Spectrum of γ subunit of R–Phycoerythrin of *Portieria hornemanni*

55. Effect of R–PE of *Portieria hornemanni* on cell viability of HBL 100 cells after 48 h treatment (Drug control - Doxorubicin)

56. Effect of R–PE of *Portieria hornemanni* on cell viability of A549 cells after 48 h treatment (Drug control - Doxorubicin)
57. Effect of R–PE of *Portiera hornemannii* on cell viability of HepG2 cells after 48 h treatment (Drug control - Doxorubicin)

58. Effect of R–PE of *Portiera hornemannii* on LDH assay of A549 cells

59. Effect of R–PE of *Portiera hornemannii* on LDH assay of HepG2 cells

60. Morphological features of A549 Control cells

61. Morphological features of A549 cells after 48 h of exposure to R–PE 750 (µg/mL) of *Portiera hornemannii*

62. Morphological features of HepG2 Control cells

63. Morphological features of HepG2 cells after 48 h of exposure to R–PE 700 (µg/mL) of *Portiera hornemannii*

64. A549 cancer cells stained with Acridine Orange/Ethidium Bromide

65. A549 control cells

66. A549 cancer cells treated with R–PE 750 (µg/mL) of *Portiera hornemannii* after 48 h

67. HepG2 cancer cells stained with Acridine Orange/Ethidium Bromide

68. HepG2 control cells

69. HepG2 cancer cells treated with R–PE 700 (µg/mL) of *Portiera hornemannii* after 48 h

70. Cell cycle status of A549 control cells after 48 h

71. Cell cycle status of A549 cells treated with R–PE 750 (µg/mL) of *Portiera hornemannii* after 48 h

72. Cell cycle status of HepG2 control cells after 48 h

73. Cell cycle status of HepG2 cells treated with R–PE 700 (µg/mL) of *Portiera hornemannii* after 48 h

74. Histopathology of liver cells of control animals at 400 X

75. Histopathology of liver cells of DEN induced animals at 400 X

76. Histopathology of liver cells of DEN + Commercial drug treated animals at 400 X

77. Histopathology of liver cells of DEN + R–PE of *Portiera hornemannii* treated animals at 400 X

78. Histopathology of liver cells of R–PE treated animals at 400 X
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Summary of purification steps of R–Phycoerythrin obtained from Portieria hornemanni</td>
</tr>
<tr>
<td>2.</td>
<td>FT–IR spectral properties of R–Phycoerythrin</td>
</tr>
<tr>
<td>3.</td>
<td>FT–Raman spectral properties of R–Phycoerythrin</td>
</tr>
<tr>
<td>4.</td>
<td>Peptide mass fingerprinting analysis of α₁ subunit of R–Phycoerythrin using Swiss–Prot</td>
</tr>
<tr>
<td>5.</td>
<td>Peptide mass fingerprinting analysis of α₂ subunit of R–Phycoerythrin using Swiss–Prot</td>
</tr>
<tr>
<td>6.</td>
<td>Peptide mass fingerprinting analysis of β₁ subunit of R–Phycoerythrin using Swiss–Prot</td>
</tr>
<tr>
<td>7.</td>
<td>Peptide mass fingerprinting analysis of β₂ subunit of R–Phycoerythrin using Swiss–Prot</td>
</tr>
<tr>
<td>8.</td>
<td>Peptide mass fingerprinting analysis of γ subunit of R–Phycoerythrin using Swiss–Prot</td>
</tr>
<tr>
<td>9.</td>
<td>Quantification of body and liver weight of experimental animals</td>
</tr>
<tr>
<td>10.</td>
<td>Quantification of different haematological constituents of blood sample</td>
</tr>
<tr>
<td>11.</td>
<td>Quantification of different biochemical constituents of serum</td>
</tr>
<tr>
<td>12.</td>
<td>Quantification of different liver marker enzymes</td>
</tr>
<tr>
<td>13.</td>
<td>Quantification of lipid profile of liver homogenate</td>
</tr>
<tr>
<td>14.</td>
<td>Quantification of enzymatic antioxidants of liver homogenate</td>
</tr>
<tr>
<td>15.</td>
<td>Quantification of non–enzymatic antioxidants of liver homogenate</td>
</tr>
<tr>
<td>16.</td>
<td>Quantification of lipid peroxidation of liver homogenate</td>
</tr>
</tbody>
</table>