ACKNOWLEDGEMENT

First and foremost, I thank the almighty God for his abundant blessings all during the course of this study. He is indeed the unseen power making this study a success. “I bow in reverence of almighty God, who poured his gracious blessing upon me”. Each of the following people has valuable contribution towards the completion of my thesis.

The endeavour would not have been possible without the continuous guidance and support of my respected research guide Prof. Ganga Bisht. This research work is sole reflection and creation of her vision, which inspired me to work on the interface of Natural Products and Nanotechnology. I am deeply indebted to her for the continuous support, valuable time, guidance, constant encouragement, patience and constructive criticism. She gave me the space to express my individuality and shaped my dreams. She will remain a role model to me all through my life. I dedicate this very blessed moment to her from core of my heart.

I owe indebtedness to my co-supervisor Dr. Nanda Gopal Sahoo, for infusing the necessary critical insight in me and for his sustained guidance. I am grateful to him for shaping scientific temperament in me, without his continuous support the work would have been but a dream, he allowed me to realise my potential. I am also thankful to him for managing all the required necessary laboratory support for me.

I am immensely grateful to former Head of Department, Prof. Ganga Bisht and Prof. S.P.S. Mehta for providing necessary laboratory, instrumental facilities and encouragement. I would also like to pay gratitude to Prof. A. B. Melkani, Head, Department of Chemistry, Kumaun University Nainital, for providing laboratory facilities and cooperation during the research period.

I would also like to give my sincere gratitude to Prof. K. S. Khetwal, Prof. A. Adhikari, Prof. C. K. Pant, Prof. C. Pandy, Prof. P. Joshi, Dr. Geeta Tiwari, Dr. Penny Joshi, Dr. Sahraj. Ali, Mr. Mahesh Arya, Dr. Sohail Javed, Dr. Manoj Dhouni from Department of Chemistry, D. S. B. Campus, Kumaun University, Nainital for their cooperation and encouragement.
I am Thankful to Dr. Mintu Pal for conducting anticancer activity (CSIR Lab, Assam) and Prof. Narayan Chandrabhas (JNCASR, Bnglore), Dr. Bhupendra Tiwari (BMRC, Lucknow), Dr. Sarvendra Rana, (UPES, Dehradun) for providing me opportunity to extend my research work by providing necessary laboratory support.

I would like to thank my parents for their love, care and support throughout my life. Thank you for giving me strength to chase my dreams. I am also thankful to my Jijaji Mr. Anshuman, Sister Himani, Brother Mayank and friend Kanika for their continuous support love and care.

I would like to thank especially to all my laboratory seniors Dr. Devendra Mishra Dr. Shivani Joshi, Dr. Vinod Gangari, Dr. Poonam Kushwaha and Dr. Deepak Chandra, for teaching me the initials of the research. I would also like to thank to all my research juniors for extending their support throughout my research work. Beside this I would like to thank research scholars and staff members of Chemistry Department for their continuous support.
Dedicated

to

My Beloved
Parents
Chapter 1: Natural Products and Recent Developments

1.1 Introduction
1.2 Newly Discovered Natural Products
1.3 Developing Horizon with Nanoscience and Nanotechnology
 1.3.1 Drug Delivery
 1.3.2 Synthesis of Nano Particles Using Greener Techniques
1.4 Aromatic Medicinal Plants under Investigation
 1.4.1 Callicarpa vestita
 1.4.2 Juniperus squamata
References

Chapter 2: Phytochemical Investigation of C. Vestita

2.1 General Information
2.2 Present Status of Knowledge
2.3 Aims and Objectives
2.4 Experimental
 2.4.1 Plant Material
 2.4.2 Extraction of the Essential oil
 2.4.3 Gas Chromatographic Analysis
 2.4.4 Gas Chromatographic-Mass Spectrometric Analysis (GC-MS)
 2.4.5 Extract of Roots of C. Vestita
 2.4.6 Preliminary Screening of the Isolate
2.5 Spectroscopic Investigations
2.6 Results and Discussion
 2.6.1 EO Profile of the C. Vestita
 2.6.2 Non volatile constituent from the extract of C. vestita roots
2.7 Conclusion
References

Chapter 3: Phytochemical Investigation of J. squamata

3.1 General Information
3.2 Present Status of Knowledge
3.3 Aims and Objectives
3.4 Experimental
 3.4.1 Plant Material
 3.4.2 Isolation of the Essential Oil
 3.4.3 Gas Chromatographic Analysis
 3.4.4 Gas Chromatographic-Mass Spectrometric Analysis (GC-MS)
 3.4.5 Column Chromatography of Berries Essential Oil
 3.4.6 Screening of the Bark Extract
 3.4.7 Extraction Procedure
 3.4.8 Qualitative Analysis of Bioactive Classes of Compounds
 3.4.9 Total Phenolic Content
 3.4.10 Total Flavonoids Content
 3.4.11 Chloroform Extract of Bark and Column Chromatography
 3.4.12 Preliminary Investigations for Determination of the Basic Skeleton of Isolate
3.5 Spectroscopy and Mass Analysis
3.6 Results and Discussion
 3.6.1 Terpenoid Profile of Leaves and Berries EO
 3.6.2 Comparative Study of the Leaves and Berries Eos
 3.6.3 Structural Elucidation of Major Component of the Berries EO
References
Chapter 4: Development of Graphene Oxide Based Nanocarrier

4.1 Introduction
4.2 Nanomaterial Based Drug Delivery
4.3 Functionalization of Carbon Nano Materials
 4.3.1 Covalent Functionalization Approach
 4.3.2 Functionalization Using Cationic, Anionic, and Radical Polymerization
 4.3.3 Covalent Functionalization Using Click Chemistry
 4.3.4 Functionalization with Bio-molecules
 4.3.5 Functionalization with Metal Nanohybrids
 4.3.6 Non-Covalent and Other Functionalization Approaches
4.4 Experimental
 4.4.1 Preparation of Graphene Oxide
 4.4.2 Preparation GO-PVA Nanocarrier
 4.4.3 Drug Loading on the Functionalized GO
 4.4.4 Spectral Analysis
4.5 Results and Discussion
 4.5.1 Characterization of GO and GO-PVA
 4.5.2 Drug Loading
4.6 Conclusion
References

Chapter 5: Anticancer and Antimicrobial Activity

5.1 Carbon nanomaterial Based Drug Delivery Systems
 5.1.1 Background and Recent Developments
 5.1.2. Doxorubicin
 5.1.3. Camptothecin
5.2 Experimental
 5.2.1 Cancer Cell Lines for the Study
 5.2.2 Culture Media
 5.2.3 Methodology
5.3 Results and Discussion
5.4 Antimicrobial Activity
 5.4.1 Test Organism
 5.4.2 Methodology
 5.4.2.1 Agar Well Diffusion Method
 5.4.2.2 Culture Media
 5.4.2.3 Composition of Various Culture Media
 5.4.2.4 Preparation of Media
 5.4.2.5 Preparation of Stock Inoculums
 5.4.2.6 Zone of inhibition (ZI) and Minimum Inhibitory Concentration (MIC)
5.5 Statistical Analysis
5.6 Results and Discussion
5.6.1 Antimicrobial Activity of Eos
5.6.2 Antimicrobial Activity of Alcoholic Bark Extract of Juniperus squamata
5.7 Conclusion
References
List of Publications
Papers Presented in International/National Conferences
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 1.1</td>
<td>Number of Publications in Different Subject Areas Related to Natural Products (Data Extracted From Scopus)</td>
</tr>
<tr>
<td>Fig 1.2</td>
<td>Number of Publications Related to Natural Products in Different Categories</td>
</tr>
<tr>
<td>Fig 1.3</td>
<td>Number of Publications Related to Natural Products during Last 15 Years</td>
</tr>
<tr>
<td>Fig 1.4</td>
<td>Number of Publications Related to Callicarpa Species (Data Accessed From Scopus)</td>
</tr>
<tr>
<td>Fig 1.5</td>
<td>Number of Publications Related to Juniperus Species (Data Accessed From Scopus)</td>
</tr>
<tr>
<td>Fig 2.1</td>
<td>(a) Geographical Distribution in Indian Subcontinent (b) C. vestita Plant with Berries</td>
</tr>
<tr>
<td>Fig 2.2</td>
<td>Schematic Representation of the GC Chromatography of C. vestita Leaves</td>
</tr>
<tr>
<td>Fig 2.3</td>
<td>GC Profile of Leaves EO of C. vestita</td>
</tr>
<tr>
<td>Fig 2.4</td>
<td>GC-MS Profile of Leaves EO of C. vestita</td>
</tr>
<tr>
<td>Fig 2.5</td>
<td>Major Constituents from the Leaves EO of C. vestita</td>
</tr>
<tr>
<td>Fig 2.6</td>
<td>FT-IR Spectra of the Isolate</td>
</tr>
<tr>
<td>Fig 2.7</td>
<td>(A) H-NMR Spectra with Peak of Hydroxyl-H (B) H-NMR Spectra without Peak of Hydroxyl- H</td>
</tr>
<tr>
<td>Fig 2.8</td>
<td>Comparative Study of EOs, J. squamata Berries (Series 1), J. squamata Leaves and Berries</td>
</tr>
<tr>
<td>Fig 3.1</td>
<td>(a) Geographical Distribution in Indian Subcontinent (b) J. squamata Plant with Berries</td>
</tr>
<tr>
<td>Fig 3.2</td>
<td>Schematic Representation of the GC Chromatogram of J. squamata Berries</td>
</tr>
<tr>
<td>Fig 3.3</td>
<td>GC Chromatogram of the EO of J. squamata Berries</td>
</tr>
<tr>
<td>Fig 3.4</td>
<td>GC-MS Chromatogram of the EO of J. squamata Berries</td>
</tr>
<tr>
<td>Fig 3.5</td>
<td>GC Chromatogram of the Berries EO of J. squamata</td>
</tr>
<tr>
<td>Fig 3.6</td>
<td>GC-MS Chromatogram of the Berries EO of J. squamata</td>
</tr>
<tr>
<td>Fig 3.7</td>
<td>Major Constituents from J. squamata Berries and Berries</td>
</tr>
<tr>
<td>Fig 3.8</td>
<td>Comparative Study of EOs, J. squamata Berries (Series 1), J. squamata Leaves and Berries</td>
</tr>
<tr>
<td>Fig 3.9</td>
<td>Gas Chromatogram of the Isolate</td>
</tr>
<tr>
<td>Fig 3.10</td>
<td>Peak Report from Online Archive</td>
</tr>
<tr>
<td>Fig 3.11</td>
<td>DEPT (135⁰) NMR of the Isolate</td>
</tr>
<tr>
<td>Fig 3.12</td>
<td>H-NMR of the Isolate</td>
</tr>
<tr>
<td>Fig 3.13</td>
<td>Mass Fragmentation Pattern of the Isolate</td>
</tr>
<tr>
<td>Fig 3.14</td>
<td>C-NMR of the Isolate from the Bark Extract of J. squamata</td>
</tr>
<tr>
<td>Fig 3.15</td>
<td>H-NMR of the Isolate from the Bark Extract of J. squamata</td>
</tr>
<tr>
<td>Fig 4.1</td>
<td>Schematic Representation of Graphene Based Drug Delivery</td>
</tr>
<tr>
<td>Fig 4.2</td>
<td>Schematic Representation of GO Synthesis</td>
</tr>
<tr>
<td>Fig 4.3</td>
<td>GO Surface with Different Functional Groups</td>
</tr>
<tr>
<td>Fig 4.4</td>
<td>Raman and FT-IR Spectra of GO</td>
</tr>
<tr>
<td>Fig 4.5</td>
<td>AFM Images of GO</td>
</tr>
<tr>
<td>Fig 4.6</td>
<td>Raman Spectra and AFM Image of GO-PVA</td>
</tr>
<tr>
<td>Fig 4.7</td>
<td>FT-IR Spectra of GO-PVA</td>
</tr>
<tr>
<td>Fig 4.8</td>
<td>UV Absorption Spectra of GO, GO-PVA-QSR and AFM Images of GO-PVA-QSR</td>
</tr>
<tr>
<td>Fig 5.1</td>
<td>Activity of QSR and GO-PVA QSR against Human Prostate Cancer Cell Lines (DU145)</td>
</tr>
<tr>
<td>Fig 5.2</td>
<td>Activity of QSR and GO-PVA QSR against Human Prostate Cancer Cell Lines (DU145)</td>
</tr>
<tr>
<td>Fig 5.3</td>
<td>Activity of QSR and GO-PVA QSR against Normal Prostate Epithelial Cell Lines (RWPE-1)</td>
</tr>
<tr>
<td>Fig 5.4</td>
<td>Activity of QSR and GO-PVA QSR against Normal Prostate Epithelial Cell Lines (RWPE-1)</td>
</tr>
<tr>
<td>Fig 5.5</td>
<td>Penetration of Cell Membrane by GO Based Carriers</td>
</tr>
<tr>
<td>Fig 5.6</td>
<td>Activity of Essential oil against Selected Bacteria</td>
</tr>
<tr>
<td>Fig 5.7</td>
<td>Comparative Chart of Activity of EOs against Selected Bacteria</td>
</tr>
<tr>
<td>Fig 5.8</td>
<td>Activity of EOs against Selected Fungal Stains</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1.1 List Newly Discovered Natural Products 05
Table 1.2 List of Synthesized Nano Particles Using Greener Techniques 13
Table 1.3 Summary of Recent Work on the Genus Callicarpa 16
Table 1.4 Summary of Recent Work on the Genus Juniperus 21
Table 2.1 Chemical Composition of Leaves EO of C. Vestita 45
Table 2.2 Peak Assignment to the Isolated Compound in H- NMR, C- NMR and FT-IR Spectra 51
Table 3.1 Chemical Composition of the Leaves EO of J. squamata 68
Table 3.2 Chemical Composition of the Berries EO of J. squamata 71
Table 3.3 Spectroscopic Data for the Structural Elucidation of the Isolate from the Berries EO 81
Table 3.4 Qualitative Analysis of Different Extracts of J. squamata Bark 83
Table 3.5 Total Phenolic µg/mL, Total Flavonoids µg/mL, DPPH (IC$_{50}$ µl/mL) Scavenging Activity of MeOH Extract, IC$_{50}$ µl/mL. 83
Table3.6 Spectroscopic Details and Characterization 86
Table 5.1 Activity of GO-PVA –QSR and QSR against Human Prostate Cancer Cell Lines (DU145) 127
Table 5.2 Activity of QSR and GO-PVA QSR against Normal Prostate Epithelial Cell Lines (RWPE-1) 128
Table 5.3 Microbial Stains for the Study 130
Table 5.4 Composition of Various Culture Media 131
Table 5.5 ZOI (in mm) Evaluated for EOs against Selected Bacterial Stains 133
Table 5.6 ZOI (in mm) Evaluated for EOs against Selected Fungal Stains 135
Table 5.7 Antibacterial Activity (Zone of Inhibition and Minimum Inhibitory Concentration, MIC) of Bark Extract of J. squamata { (Positive Control, Kanamycin (50µg/mL))} 136
Table 5.8 Antifungal activity (zone of inhibition and Minimum Inhibitory Concentration, MIC) of Bark Extract of J. squamata { (Positive Control, Nystatin (30µg/mL))} 136
ABBREVIATIONS

AFM Atomic Force Microscope
Ar-OH Phenol
ATRP Atom Transfer Radical Polymerization
C. Callicarpa
CNM Carbon Nanomaterials
CNT Carbon Nanotubes
CPT Camptothecin
DCC N,N’-dicyclohexylcarbodiimide
DEPT Distortionless Enhancement by Polarization Enhancement
DFT Density Functional Theory
DI Deionized
DMAP 4-Dimethylaminopyridine
DMF Dimethylformamide
DMSO Dimethyl Sulfoxide
DNA Deoxyribonucleic Acid
DOX Doxorubicin
EPR Enhanced Permeability and Retention
EO Essential Oil
FT-IR Infrared Spectroscopy
GAE Gallic Acid Equivalent
GC Gas Chromatography
GC-MS Gas Chromatography-Mass Spectrometry
GNP Graphene Nanoplate
GNS Graphene Nanosheet
GO Graphene Oxide
HOMO Highest Occupied Molecular Orbital
IC_{50} Inhibitory Concentration
IR Infrared Spectroscopy
J. Juniperus
LUMO Lowest Occupied Molecular Orbital
Me-OH Methanol
NMR Nuclear Magnetic Resonance
NPs Nanoparticles
PEG Polyethylene Glycol
PNIPAM Poly(N-isopropylacrylamide)
PTFE Polytetrafluoroethylene
PVA Polyvinyl Alcohol
QSR Quercetin
RAFT Reversible Addition Fragmentation Chain Transfer Polymerization
RGO Reduced Graphene Oxide
RNA Ribonucleic Acid
ROP Ring-Opening Polymerization
SWNT Single Wall Carbon Nanotube
Tf Transferring
TFC Total Flavonoids Content
TLC Thin Layer Chromatography
TMS Tetra Methyl Silane
TPC Total Phenolic Content
PREFACE

Contemporary research works demonstrate a trend for a transition, accepting challenges more of interdisciplinary nature. It is an era of science where different streams have joined their hands together to address key challenges of the contemporary world. This research work is one such attempt where an effort has been made to create new horizon by merging Natural Products and Nanotechnology. World has witnessed dependency of human beings on Natural Products as an effective measure to treat numerous ailments for centuries. Undoubtedly, Natural Products have occupied no less space in our day to day life but there are certain inherent drawbacks associated with them owing to their atomic organization. Retarded solubility in biological atmosphere is indisputably one of them. It inhibits their pharmaceutical action and restricts their wider application in modern pharmaceutics. Carbon nanomaterials (CNMs) have provided us an opportunity to impart artificial solubility in these biologically active compounds along with providing high cellular permeability. The modification of different nanomaterials and their surface at the nano scale has been exploited in recent decades especially by nano chemists and technologists. The synthesis of CNMs and alteration of their surface provides an opportunity to impart artificial solubility in water insoluble moieties. This research work is dedicated to phytochemical screening of two medicinally important plants viz. *C. vestita* and *J. squamata*, collected from Kumaun Himalayas. Water insoluble isolate of *C. vestita* has been investigated for its pharmaceutical potential against selected cancer cell lines. Therapeutic action of isolate was enhanced by developing Graphene Oxide based nanocarriers. This nanocarrier has been developed by combining large surface area containing Graphene Oxide sheets with hydrophilic polymer PVA. The large surface of the nano carrier was exploited for the efficient loading and delivery of the isolate inside the cancer cell lines. This innovative attempt has assured enhanced pharmacological effect of water insoluble molecule inside the biological atmosphere. This research work proposes a reliable alternative to deliver such water insoluble molecules to the biological atmosphere with an enhanced pharmaceutical action.

The thesis has been divided into Five Chapters, a short description of these Chapters has been mentioned below.

The first Chapter of the thesis puts light on recent research trends, emphasizing more on carbon nanomaterials based drug delivery and use of natural products in the synthesis of nanoparticles. The Chapter also deals with concise introduction and literature review of the proposed plants.

The second Chapter deals with phytochemical screening of *C. vestita*. In this Chapter EO and plant extract have been evaluated by various spectroscopic techniques. The terpenoid profile of the EO has been evaluated by the help of GC and GC-MS techniques, and the structural elucidation of the isolate from root extract was done with the help of various spectroscopic techniques.
The third Chapter elaborates phytochemical screening of *J. squamata*. In this Chapter EO of leaves and berries and plant extract have been evaluated by various spectroscopic techniques. The terpenoid profile of the EO of *Juniper* berries and leave has been evaluated by the help of GC and GC-MS techniques, and the structural elucidation of the isolate from root extract was done with the help of various spectroscopic techniques. The berries EO was used to establish chemotaxonomic status of the plant.

The fourth Chapter covers the synthesis of Graphene Oxide and its characterization. The synthesized GO was later used in order to develop nanocarriers for the isolate by surface revamping. This Chapter also discusses loading of isolate from the *C. vestita* on to the nanocarriers. Characterization of GO, its functionalization with hydrophilic polymer and loading of isolate was confirmed by various techniques such as AFM, Raman, FT-IR and UV spectrometry.

The last Chapter of the thesis discusses drug delivery potential of the developed nanocarriers against selected cancer cell lines. In addition, antimicrobial activities of the EO of *C. vestita, J. squamata* has also been undertaken in this Chapter of the thesis.