TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Review of Literature</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Biofouling</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1 The process of marine biofouling</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2 Conditioning film</td>
<td>5</td>
</tr>
<tr>
<td>2.1.3 Microfouling</td>
<td>6</td>
</tr>
<tr>
<td>2.1.4 Macrofouling</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Deleterious effects of marine biofouling</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Antifouling techniques</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1 Physical methods</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1.1 Electrolysis and radiation</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1.2 Modification of surface physical properties</td>
<td>9</td>
</tr>
<tr>
<td>2.3.1.2.1 Fouling release low surface energy coatings</td>
<td>9</td>
</tr>
<tr>
<td>2.3.1.2.2 Polymer brushes in antifouling</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1.2.3 Antifouling sol-gel coatings</td>
<td>13</td>
</tr>
<tr>
<td>2.3.1.2.4 Zwitterionic surfaces in antifouling technology</td>
<td>13</td>
</tr>
<tr>
<td>2.3.1.2.5 Amphiphilic surfaces</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2 Chemical methods</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2.1 Traditional chemical methods</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2.2 Modern chemical methods</td>
<td>17</td>
</tr>
<tr>
<td>2.3.2.2.1 TBT self-polishing copolymer technology</td>
<td>17</td>
</tr>
<tr>
<td>2.3.2.2.2 Tin-free SPC technology</td>
<td>17</td>
</tr>
<tr>
<td>2.3.3 Biological methods</td>
<td>18</td>
</tr>
<tr>
<td>2.3.3.1 Marine derived natural products as antifoulants</td>
<td>18</td>
</tr>
<tr>
<td>2.3.3.2 Compounds from marine microorganisms</td>
<td>18</td>
</tr>
<tr>
<td>2.3.3.3 Compounds from aquatic plants</td>
<td>20</td>
</tr>
<tr>
<td>2.3.3.4 Compounds from marine invertebrates</td>
<td>21</td>
</tr>
<tr>
<td>2.3.3.5 Compounds from terrestrial sources</td>
<td>25</td>
</tr>
<tr>
<td>2.4 Nanotechnology and nanoparticles</td>
<td>26</td>
</tr>
<tr>
<td>2.4.1 Synthesis of AgNPs and its applications</td>
<td>26</td>
</tr>
</tbody>
</table>
2.4.1 Chemical methods
 2.4.1.1 Microbe mediated synthesis of AgNPs
 2.4.1.2 Plant mediated synthesis of AgNPs
 2.4.1.3 Biological methods
 2.4.1.3.1 Microbe mediated synthesis of AgNPs
 2.4.1.3.2 Plant mediated synthesis of AgNPs

2.4.2 Synthesis of ZnO-NPs and applications

3. Scope of the Investigation
 3.1 General
 3.2 Objective
 3.3 Investigations carried out

4. Experiments
 4.1 Isolation, screening and identification of marine biofilm forming bacteria
 4.1.1 Introduction
 4.1.2 Materials and Methods
 4.1.2.1 Chemicals
 4.1.2.2 Culture media
 4.1.2.3 Biofilm collection
 4.1.2.4 Isolation and screening of bacterial isolates
 4.1.2.5 Identification of bacteria through biochemical analysis
 4.1.2.6 Molecular identification of bacterial isolates
 4.1.3 Results
 4.1.3.1 Isolation and screening of bacterial isolates
 4.1.3.2 Biochemical analysis
 4.1.3.3 Molecular identification of the bacterial isolates
 4.2 Synthesis of AgNPs and ZnO-NPs using chemical and biological methods
 4.2.1 Introduction
 4.2.2 Materials and Methods
 4.2.2.1 Chemicals
 4.2.2.2 Chemical synthesis of AgNPs
 4.2.2.3 Chemical synthesis of ZnO-NPs
 4.2.2.4 Biosynthesis of AgNPs
 4.2.2.5 Biosynthesis of ZnO-NPs
4.2.2.6 Confirmation of nanoparticles synthesis using UV and XRD analysis

4.2.2.7 Analysis of phytochemicals present in the fruit extract of A. marmelos

4.2.2.8 Analysis of phytochemicals present in coconut water

4.2.3 Results

4.2.3.1 UV-vis analysis of chemically synthesized AgNPs

4.2.3.2 XRD analysis of chemically synthesized AgNPs

4.2.3.3 UV-vis analysis of chemically synthesized ZnO-NPs

4.2.3.4 XRD analysis of chemically synthesized ZnO-NPs

4.2.3.5 UV-vis analysis of biosynthesized AgNPs

4.2.3.6 XRD analysis of biosynthesized AgNPs

4.2.3.7 Possible formation mechanism of biosynthesized AgNPs

4.2.3.8 UV-vis analysis of biosynthesized ZnO-NPs

4.2.3.9 XRD pattern of biosynthesized ZnO-NPs

4.2.3.10 Possible formation mechanism of ZnO-NPs using coconut water

4.3 Evaluation of antimicrofouling activity of AgNPs and ZnO-NPs against biofilm forming bacteria

4.3.1 Introduction

4.3.2 Materials and methods

4.3.2.1 Chemicals

4.3.2.2 Antibacterial activity of AgNPs and ZnO-NPs on marine biofilm forming bacteria by well diffusion assay

4.3.2.3 Growth patterns of marine biofilm forming bacteria exposed to silver and zinc oxide nanoparticles

4.3.2.4 Formulation of nano-coatings – sol-gel approach

4.3.2.4.1 Preparation of TESGs and standardization of curing conditions

4.3.2.4.2 Characterization of the synthesized sol-gel coatings

4.3.2.5 Antifouling activity of nanoparticle doped sol-gel coatings using crystal violet assay

4.3.3 Results
4.3.3.1 Well diffusion assay 71
4.3.3.2 Growth patterns of bacterial isolates 74
4.3.3.3 Preparation and characterization of the synthesized TEOS sol-gels 80
4.3.3.4 Antibiofilm activity of nanoparticle doped sol-gel coatings 84

4.4 Optimization of process parameters for the biosynthesis of nanoparticles using response surface methodology 86
4.4.1 Introduction 86
4.4.2 Materials and methods 86
 4.4.2.1 Chemicals 86
 4.4.2.2 Preparation of the extracts 87
 4.4.2.3 Optimization of process parameters for the biosynthesis of nanoparticles 87
 4.4.2.4 Characterization of biosynthesized nanoparticles 87

4.4.3 Results 88
 4.4.3.1 Statistical validation of the model 88
 4.4.3.2 Characterization of biosynthesized AgNPs 100
 4.4.3.3 Characterization of biosynthesized ZnO-NPs 104

4.5 Mechanism of action of biologically synthesized AgNPs and ZnO-NPs on marine biofilm forming bacteria 109
4.5.1 Introduction 109
4.5.2 Materials and methods 109
 4.5.2.1 Chemicals and culture media 109
 4.5.2.2 Effect of biologically synthesized nanoparticles on extracellular polymeric substances (EPS) production 109
 4.5.2.3 Effect of biologically synthesized nanoparticles on reactive oxygen species (ROS) generation 110
 4.5.2.4 Effect of biologically synthesized nanoparticles on biofilm formation by SEM analysis 110
 4.5.2.5 Effect of biologically synthesized nanoparticles on leakage of membrane proteins 111

4.5.3 Results 111
 4.5.3.1 Effect of nanoparticles on EPS production 111
 4.5.3.2 Effect of nanoparticles on ROS generation 113
4.5.3.3 SEM analysis of biofilms grown on TESGs coatings 114
4.5.3.4 Effect of nanoparticles on proteins 120
4.6 Antimacrofouling activity of biosynthesized AgNPs and ZnO-NPs 122
against marine macrofoulers
4.6.1 Introduction 122
4.6.2 Materials and methods 122
 4.6.2.1 Test organisms 122
 4.6.2.2 Preparation of test substrates 122
 4.6.2.3 Mollusc foot adherence assay 123
 4.6.2.4 Anticrustacean assay 123
4.6.3 Results 123
 4.6.2.3.1 Mollusc foot adherence assay 123
 4.6.2.3.2 Anticrustacean assay 126

5. Discussion 128
5.1 Isolation, screening and identification of marine biofilm forming bacteria 128
5.2 Synthesis of AgNPs and ZnO-NPs using chemical and biological methods 129
5.3 Antimicrofouling effect of the synthesized nanoparticles against marine biofilm forming bacteria 131
5.4 Optimization of process parameters for the biosynthesis of nanoparticles using response surface methodology 133
5.5 Acting mechanism of biologically synthesized AgNPs and ZnO-NPs on marine biofilm forming bacteria 134
5.6 Antimacrofouling activity of biosynthesized AgNPs and ZnO-NPs against marine macrofouling organisms 136

6. Summary and conclusions 138

References

Publications