LIST OF FIGURES

Fig. 4.1 Diagram showing the dendogram of *Aspergillus* strains used in deinking experiments.

Fig. 4.2 Zymogram showing expression of multiple endoglucanases (a) and β-glucosidases (b) isoforms produced by *Aspergillus* strains.

Fig 4.3 Morphology of *Aspergillus terreus* (a) and Microscopic photomicrograph (100x) showing the mycelium of *Aspergillus terreus* (b).

Fig. 4.4a Zymogram showing effect of different carbon sources on expression of multiple endoglucanase isoforms by *A. terreus*.

Fig. 4.4b Zymogram showing effect of different carbon sources on expression of multiple β-glucosidases by *A. terreus*.

Fig. 4.5 Contour plot showing the effect of pH and moisture (a), pH and % CSL (b) and % CSL and moisture (c) on endoglucanase activity.

Fig. 4.6 Contour plot showing the effect of pH and moisture (a), pH and % CSL (b) and % CSL and moisture (c) β-glucosidase activity.

Fig. 4.7 Contour plot showing the effect of pH and moisture (a) and pH and % CSL (b) on FPase activity.

Fig. 4.8 Contour plot showing the effect of pH and moisture (a), pH and % CSL (b) and % CSL and moisture on xylanase activity.

Fig. 4.9 Fractionation of *A. terreus* EG (a), β-glucosidase (b) and xylanase (c) components by isoelectric focusing in polyacrylamide gel.

Fig. 4.10a Zymogram showing effect of different carbon sources on expression of multiple endoglucanases by *A. terreus* under shake flask culture.

Fig. 4.10b Zymogram showing affect of different carbon sources on expression of multiple β-glucosidases by *A. terreus*.

Fig. 4.11 Effect of addition of different additives @1% (w/v) to corn cob (CC) 1% (w/v) containing production medium on the production of endoglucanase
(a), β-glucosidase (b), CBH and xylanase (d) by \textit{A. terreus} after 120 h of incubation.

Fig. 4.12a Zymogram showing the effect of addition of different additives @1% (w/v) containing medium on the expression of endoglucanase isoforms of \textit{A. terreus} under shake flask culture.

Fig. 4.12b Zymogram showing the expression of multiple β glucosidases in \textit{A. terreus} grown on medium containing @ 1% (v/v) under shake flask culture.

Fig. 4.13 Profile of endoglucanase (a) and β-glucosidase (b) production by \textit{A. terreus} grown on corn cob containing medium. Inset zymogram shows the sequential expression of endoglucanase (a) and β-glucosidase (b) isoforms.

Fig. 4.14 TLC showing profile of the metabolites present in the culture extracts of \textit{A. terreus} grown on corn cobs containing medium under shake flask culture.

Fig. 4.15 Steps involved in separation of endoglucanase from crude extract DEAE-Sepharose (a) Phenyl sepharose (HIC) column (b) and Gel filtration (c & d).

Fig. 4.16 SDS-PAGE (a) and Isoelectric focusing (b) of purified from \textit{A. terreus} (AN1)

Fig. 4.17 Temperature (a) and pH (b) optima curves of purified Endoglucanase EG I and EG II from \textit{A. terreus}

Fig. 4.18a Stability of Endoglucanase EG I at different temperature at (I) pH 3 (II) pH 4 and (III) pH 5

Fig. 4.18b Stability of Endoglucanase EG II at different temperatures at (I) pH 3 (II) pH 4 and (III) pH 5

Fig. 4.19 Effect of metal ions and chemicals on activity of Endoglucanase EG I and EGII.

Fig. 4.20 TLC analyses of hydrolyzed products of CMC, xyloglucan barley-β-glucan.

Fig. 4.21 Steps involved in separation of Betaglucosidase from crude extract (a) DEAE-Sepharose (b) Phenyl sepharose (HIC) column (c) Gel filtration.

Fig. 4.22 (a) SDS-PAGE (a) of purified isoforms of β-glucosidases (β-G I) from \textit{A. terreus}.
Fig. 4.22(b) SDS-PAGE (a) of purified isoforms of β-glucosidases (β-G II) from *A. terreus*.

Fig. 4.22 (c) SDS-PAGE (a) of purified isoforms of β-glucosidases (β-G III) from *A. terreus*.

Fig. 4.22 (d) Isoelectric focusing of purified isoforms of β-glucosidases.

Fig. 4.23 Temperature (a) and pH (b) optima curves of purified β-glucosidase (β-G) I, II, and III from *A. terreus*.

Fig. 4.24a Stability of β-glucosidase (β-G) I at different temperature at pH 5 (I), pH 6 (II) and pH 7 (III).

Fig. 4.24b Stability of β-glucosidase (β-G) II at different temperature at pH 3 (I), pH 4 (II) and pH 5 (III).

Fig. 4.24c Stability of β-glucosidase (β-G) III at different temperature at pH 4 (I), pH 5 (II) and pH 6 (III).

Fig. 4.25 Effect of metal ions and chemicals on activity of β-glucosidase βG I, II and III.

Fig. 4.26 Effect of methanol, ethanol and butanol added @ 20% (v/v) on the activities of β-glucosidase βG-I, II and III (a) and effect of different % (v/v) of methanol, ethanol and butanol on β-glucosidase βG-I activity (b) of *A. terreus*.

Fig. 4.27 Effect of different % (v/v) of methanol on glycosyl-transferase activity of β-glucosidase II of *A. terreus*.