List of Figures

Fig. 1.1(a) Molecular Structure of Propylene Glycol...06
Fig. 1.1(b) Molecular Structure of Propylene Glycol-1,3 ..06
Fig. 1.1(c) Molecular Structure of Dipropylene Glycol..07
Fig. 1.1(d) Molecular Structure of Tripropylene Glycol..07
Fig. 1.1(e) Molecular Structure of water..08
Fig. 2.1 Frequency Dependant complex permittivity spectra...19
Fig. 2.2 Cole-Cole plot for Debye type relaxation...19
Fig. 2.3 (a) Complex permittivity for Debye and Cole-Cole model (α=0.5) model (b) Cole-Cole
plot for Cole-Cole model...21
Fig. 2.4 Cole-Cole plot with different values of symmetric distribution parameter α............22
Fig. 2.5 Complex Permittivity and Cole-Davidson type behavior with β=0.5.......................23
Fig. 2.6 Cole-Cole Plot for Cole-Davidson model at different β values.................................24
Fig. 2.7 (a) complex permittivity spectra of Harvilik-Nigemi behavior and (b) Cole-Cole plot
analogues to it ..25
Fig. 2.8 Relaxation time range for various organic functional groups.................................29
Fig. 2.9 Bruggeman factor (f_B) vs. mole fraction of solvent...33
Fig. 3.1 Schematic chart of experimental techniques ..40
Fig. 3.2 Block diagram of TDR...41
Fig. 3.3 Circuit diagram for load terminations...42
Fig. 3.4 TDR waveforms- open, short and 50Ω terminations the short circuit is measured as -1ρ
(rho) and the open circuit (infinite rho) resolution a rho of +1 ..43
Fig. 3.5 TDR setup with temperature controller system..45
Fig. 3.6(a) Coaxial cable with open ended sample cell (b) End point of sample cell……….46
Fig. 3.7 Reflected pulse without $R_1(t)$ and with sample $R_x(t)$ for pure water………………….48
Fig. 3.8 (a) Sample pulse of $R_1(t)+R_x(t)$ for pure water (b) Sample pulse of $R_1(t)-R_x(t)$ for pure water………………………………………………………………………………………………….49
Fig. 3.9 (a) Frequency dependence dielectric permittivity (ε') and dielectric loss (ε'') for water at 25^0C……………………………………………………………………………………………..54
Fig. 3.9 (b) Frequency dependence dielectric permittivity (ε') and dielectric loss (ε'') for alcohols at 25^0C……………………………………………………………………………………………..54
Fig. 3.9 (c) Complex permittivity spectra for Acetone at 25^0C………………………………………..55
Fig. 3.9 (d) Complex permittivity spectra for Dimethylformamide at 25^0C……………………………55
Fig. 3.9 (e) Complex permittivity spectra for 1,4-Dioxane at 25^0C………………………………………56
Fig. 3.9 (f) Complex permittivity spectra for Glycerol at 25^0C………………………………………...56
Fig. 4.1(a) Frequency dependence of the (a) dielectric permittivity (ε') and (b) Dielectric loss (ε'') for Propylene Glycol (1, 2-propanediol)-water mixtures of various concentrations at 25^0C………………………………………………………………………………………………….71
Fig. 4.1(b) Frequency dependence of the (a)dielectric permittivity(ε') and (b)Dielectric loss(ε'') for Propylene Glycol-1,3(1,3-Propanediol)-water mixtures of various concentrations at 25^0C………72
Fig. 4.2(a) (i) Relaxation time (τ) and (ii) dielectric constant (ε_0) vs volume fraction of Propylene Glycol-1,3(1,3-propanediol)-water mixture at different temperature…… …………………73
Fig. 4.2(b) (i)Relaxation time (τ) and (ii)dielectric constant (ε_0) vs volume fraction of Propylene Glycol (1,2-propanediol)-water mixture at different temperature………………………………………………………74
Fig. 4.3 Arrhenius plot for (a) Propylene glycol (1,2-Propanediol)-water (b) Propylene glycol-1,3 (1,3-propanediol)-water mixture at different concentration…………………………………..77
Fig.4.4 Kirkwood correlation factor g^{eff} for (a) Propylene glycol (1,2-Propanediol)-water
(b) Propylene glycol-1,3 (1,3-propanediol)–water mixtures

Fig.4.5 Excess permittivity vs. mole fraction of water at different temperatures

Fig.4.6 Variation of Bruggeman factor f_B with volume fraction of (a) Propylene glycol (1,2-Propanediol) (b) Propylene glycol-1,3 (1,3-propanediol) in water

Fig.5.1 Complex permittivity spectra for DPG-water mixtures at 20°C

Fig.5.2 Variation of static dielectric constant and relaxation time for DPG-water mixtures

Fig.5.3 Excess dielectric constant vs. mole fraction of water at different temperatures

Fig.5.4 Plot of Bruggeman factor (f_B) as function of volume fraction of water at 20°C

Fig.6.1 Frequency dependence (a) dielectric permittivity (ε') and (b) Dielectric loss (ε'') for Tripropylene glycol-water mixture at 20°C

Fig.6.2 Temperature dependence relaxation time (τ) and dielectric constant (ε_0) of Tripropylene glycol-water mixture

Fig.6.3 Plot of log (τT) vs. reciprocal of temperature for different weight fractions of TPG in water

Fig.6.4 plot of Kirkwood correlation factor (g^{eff}) vs. mole fraction of TPG in water at different temperatures

Fig.6.5 Variation of Bruggeman factor with volume fraction of TPG in water

Fig.7.1 The complex dielectric permittivity spectra for glycols at 20°C

Fig.7.2 The variation of dielectric constant (ε_0) for glycols-water mixture

Fig.7.3 The variation of relaxation time (τ) for glycol-water mixture

Fig.7.3 Excess dielectric permittivity vs. mole fraction of water at different temperature