Contents

Synopsis 1

Abbreviation 5

I Introduction 6

1 Transcription in bacteria 7

1.1 Rho dependent transcription termination in bacteria 8

2. Overview of the transcription apparatus and its associated proteins 11

3 NusG and Polarity Suppression protein (Psu) 19

3.1 Role of NusG 19

3.2 Structural features of NusG 22

3.3 Psu from phage P4 23

4 Scope of this thesis 25

II Methods — theoretical background 26

5 Protein crystallisation 27

5.1 Crystallisation techniques 27

6 Protein crystallography 31

6.1 The phase problem 31

6.1.1 Molecular replacement 33

6.1.2 Experimental phasing 35

6.2 Phase improvement — density modification 38

6.2.1 Automatic model building 38
III Materials and Methods

7 Purification, crystallization, data collection, processing and refinement 41

7.1 Cloning and expression of the NusG full length, NTD and CTD domains 41

7.2 Expression and purification of recombinant proteins in E. coli 44

7.2.1 Protein expression 44

7.2.2 Purification of 6xHis-tagged Proteins 45

7.2.3 Removal of His-tag with thrombin 48

7.2.4 Size exclusion chromatography using Sephacryl S-100 48

7.2.5 Preparation of Psu WT and T123C mutant proteins 49

7.3 Crystallization of the target proteins 49

7.3.1 Crystallization of NusG CTD 49

7.3.2 Data Collection and Processing 50

7.3.3 Crystallization, data collection and structure determination of wild type Psu 50

7.3.4 Crystallization, data collection and structure determination of Psu T123C 51

7.3.5 Circular dichroism measurement 52

7.3.6 Fluorescence Spectroscopy 54

7.3.7 Cross Linking and SDS-PAGE 54

7.3.8 Structural analysis 55

7.3.9 Docking of Psu dimer on the Rho hexamer 55

7.3.10 Transmission Electron Microscopy (TEM) 55
IV Results

8 Cloning and purification of the proteins

8.1 Cloning and Overexpression of NusG FL, NusG NTD, NusG CTD and Rho

8.2 Purification of 6X-his tagged proteins

8.3 Thrombin cleavage standardization and size exclusion chromatography

9 Crystallization and data collection

9.1 Crystallization

9.2 Data Collection

10 Structure solution: Problems with full length NusG and its domain constructs

10.1 Problem in purification of Full length NusG, crystallization of NTD and structure solution of the NusG CTD

11. Structural and biophysical characterization of the Psu protein

11.1 Structure of the Polarity Suppression protein (Psu)

11.1.1 Experimental phasing of Psu by Hg-SAD method

11.1.2 Structural features of Psu: “A novel fold in the PDB”

11.1.3 A coiled-coil conformation at the N-terminal

11.1.4 The ‘CT belt’ wraps and stabilizes the ‘CC stem’

11.1.5 A uniquely knotted biological assembly adopted by Psu dimer

11.1.6 Similarity of the Psu crystal structure with the Electron micrograph

11.1.7 Validation of the knot in solution

11.1.8 Relative flexibility of the “CT-belt” to the “CC stem”
11.1.9 Renaturation ability of unfolded Psu without any chaperone 93
11.1.10 Probable mode of interaction of Psu with Rho 94
11.1.11 Capability of Psu from Enterobateria phage P4 to interact with Rho from *Vibrio cholerae*O395 96
11.1.12 Transmission Electron Microscopy of the Psu: Rho (from *Vibrio cholerae*O395) complex 98

V Discussion 100
VI References 105
VII Articles 116