<table>
<thead>
<tr>
<th>Chapters</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Phase transitions in low-dimensional systems</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Two-dimensional melting: experimental observations</td>
<td>6</td>
</tr>
<tr>
<td>1.2.1 Studies on liquid-crystal films</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2 Studies on rare gases adsorbed on graphite substrate</td>
<td>9</td>
</tr>
<tr>
<td>1.2.3 Studies on electrons on the surface of liquid helium</td>
<td>11</td>
</tr>
<tr>
<td>1.2.4 Studies on charged sub-micron sized spheres</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Two-dimensional melting: theoretical understanding</td>
<td>12</td>
</tr>
<tr>
<td>1.3.1 Order parameters, symmetries and correlation</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2 Topological defects</td>
<td>15</td>
</tr>
<tr>
<td>1.3.3 Vortex unbinding transition: KT theory</td>
<td>19</td>
</tr>
<tr>
<td>1.3.4 Dislocation mediated melting: KTHNY theory</td>
<td>20</td>
</tr>
<tr>
<td>1.3.5 Analogy with magnetism</td>
<td>22</td>
</tr>
<tr>
<td>1.4 Two-dimensional magnetization: experimental observations</td>
<td>23</td>
</tr>
<tr>
<td>1.5 Two-dimensional magnetism: theoretical understanding</td>
<td>26</td>
</tr>
<tr>
<td>1.5.1 General theory of ferromagnetism and spin waves</td>
<td>26</td>
</tr>
<tr>
<td>1.5.2 Absence of long-range ordering: Mermin-Wagner theorem</td>
<td>30</td>
</tr>
<tr>
<td>1.5.3 Long-range magnetic order in presence of dipolar interaction</td>
<td>32</td>
</tr>
<tr>
<td>1.5.4 Magneto-crystalline anisotropic interaction</td>
<td>33</td>
</tr>
<tr>
<td>1.5.5 Spin-waves in presence of exchange, dipole and magneto-crystalline anisotropic interactions</td>
<td>34</td>
</tr>
<tr>
<td>1.5.6 Stripe domain formation in 2D magnetic layers</td>
<td>36</td>
</tr>
<tr>
<td>1.6 Outline of the present work</td>
<td>37</td>
</tr>
<tr>
<td>2. Experimental Techniques</td>
<td>40</td>
</tr>
<tr>
<td>2.1 Langmuir-Blodgett deposition technique</td>
<td>41</td>
</tr>
<tr>
<td>2.1.1 Preparation of Langmuir monolayer</td>
<td>41</td>
</tr>
</tbody>
</table>
2.1.2 Deposition of LB films 46
2.2 X-ray and Neutron scattering techniques 50
 2.2.1 X-ray and Neutron reflectivity basic formalism 52
 2.2.2 Instrument for X-ray reflectivity study 60
 2.2.3 Instrument for Neutron reflectivity study 62
 2.2.4 X-ray grazing incidence diffraction 66
 2.2.5 Polarized neutron reflectivity 70
2.3 Instrument for magnetization measurements 74

 3.1 Introduction ... 80
 3.2 Experimental details 85
 3.3 Analysis scheme 87
 3.4 Experimental results 89
 3.4.1 Structure of divalent fatty acid salt LB films ... 89
 3.4.2 Structure of preformed trivalent fatty acid salt LB films ... 94
 3.5 Conclusions ... 103

4. Two-dimensional to three dimensional melting transition in Langmuir-Blodgett Films 105
 4.1 Introduction ... 106
 4.2 Experimental details 110
 4.2.1 The sample cell 111
 4.2.2 X-ray Reflectivity studies 112
 4.2.3 Grazing incidence diffraction studies 113
 4.3 Data analysis .. 114
 4.3.1 Energy dispersive reflectivity 114
 4.3.2 Grazing incidence diffraction 118
 4.4 Model and interpretation 123
 4.5 Conclusions ... 126

5. Two-dimensional magnetic ordering in Langmuir-Blodgett films ... 127
 5.1 Introduction ... 128
 5.2 Experimental details 131
 5.2.1 Sample preparation and characterization 131
 5.2.2 Magnetization measurements 132
 5.3 Structure characterization of GdSt LB films 133
 5.4 Short-range ferromagnetic ordering: results of VSM measurements 134
 5.5 Magnetic structure of LB films: Neutron reflectivity study 139
5.6 Anisotropic interactions in ferromagnetic ordering: results of sub-Kelvin magnetization measurements ... 143
5.7 Conclusions ..146

Bibliography ... 147