List of Tables

Table 1 The genetic distance values of groups A and B were individually regressed against the corresponding similarity values to find out the relationship of both variables. 48
Table 2 Mutations are responsible for NIVs adaptation in humans. 50
Table 3 Mutation in the amino acid sites exclusively fixed in the NIVs from swine, human and vaccine strain 2009. 65
Table 4 Inference of positive Darwinian selection on NIVs. 75
Table 5 Statistical values from different models of empirical Bayesian approach (Selecton) for each protein of NIVs. 78
Table 6 Inference of purifying selection on NIVs by using CML and BS methods from Datamonkey. 79
Table 7 Functions for positively selected sites of NIVs are inferred with groups of functionally known amino acid sites. 98
Table 8 Functions for purifying selected sites of NIVs are inferred with groups of functionally known amino acid sites. 105
Table 9 Strain names and their accession numbers of NIVs from NCBI-IVR. 123

List of Figures

Fig. 1 Phylogenetic trees of all eight gene segments of the NIVs. The trees were reconstructed with MEGA 4.1 by using NJ method under p-distance model. 30
Fig. 2 Phylogenetic trees of all eight gene segments of the NIVs. The trees were reconstructed with MEGA 4.1 by using MCL method under Tamura-Nei model. 35
Fig. 3 Occurrence of host and lineage origin for each gene segment of the NIVs. 40
Fig. 4 The groups A-F of each gene segment was used to calculate the GD by MEGA 4.1 using NJ method under p-distance model. 42
Fig. 5 Similarity and GD of all gene segments were used for perfect negative correlation test. 44
Fig. 6 Cluster analysis was carried out for sequence similarity and GD variables from groups A-B by using UPGMA algorithm under Euclidean distance 46
model in PAST 2.05.

Fig. 7 Estimation of unsampled diversity (in year) and age of NIVs by using tip-dating with the least-squares method under ML CompositeF84 model in DAMBE 5.2.

Fig. 8 Phylogenetic trees of external antigen HA and NA of NIVs. The trees were reconstructed by MEGA 4.1 using NJ method under p-distance model.

Fig. 9 Phylogenetic trees of external antigen HA and NA of NIVs. The trees were reconstructed by MEGA 5.05 using ML method under JTT model.

Fig. 10 The groups A-F of HA and NA proteins were used to calculate the GD by MEGA 4.1 using NJ method under p-distance model.

Fig. 11 Similarity and GD of HA and NA, were used for perfect negative correlation test.

Fig. 12 Phylogenetic trees of external antigen HA and NA of the NIVs from swine, human and 2009 vaccine strain along with classical swine influenza virus. The trees were reconstructed by MEGA 4.1 using NJ method under p-distance model.

Fig. 13 Test statistic of dN-dS values of each codon of NIVs.

Fig. 14 Test statistic of normalized dN-dS values of each codon of NIVs.

Fig. 15 Selecton test statistic selection profiles of ‘ω’ value for each amino acid site of NIVs.

Fig. 16 Phylogenetic trees of all gene/protein segments of the NIVs. The trees were reconstructed by MEGA 5.05 using NJ method under Tamura-Nei model.