LIST OF PUBLICATIONS OF THE AUTHOR RELATED TO THE
PRESENT WORK:

INTERNATIONAL JOURNALS PUBLISHED

1. “Simulink Modeling and Hardware Implementation of UPFC in a

2. “Modal Analysis of Voltage Stability Assessment in a Power
 System using a Comprehensive Model of UPFC” published in the
 “International Journal of Power Systems and Power Electronics”

3. “Simulation and Analysis of Single Phase Z source Matrix
 Converter for Power Flow Control using UPFC” published in the
 “International Journal of Applied Engineering Research, IJAER”
 Vol 6 (20), 2011, Pp 2419-2430, and ISSN No: 0973-4562. Impact
 Factor-0.5

4. “Genetic Algorithm based Dispatch Strategy of Voltage Stability
 Limited Power Transfer using a Unique Model UPFC” published
 in the Global Journal of Researches in Engineering”(GJRE),
 Volume 12, Issue 1, Version 1.0, January 2012. ISSN: 2249-4596
 and ISSN 0975-5861 Impact Factor- 1.04

5. “Voltage Stability Analysis comparing Generator Sensitivity based
 Method with V-Q Curve Method for Optimal Placement of UPFC”
 published in the International Journal of Computer Applications
INTERNATIONAL CONFERENCES

NATIONAL CONFERENCES

Appendix 6.0 UPFC Controllable Parameters- line 20- Max Psp=0.3995, Max Qsp=0.15, Target Voltage=1.0 p.u at bus 14 - IEEE 14 Bus

Appendix 6.1 UPFC in line 20- Max Psp=0.3955, Max Qsp=0.15, Target Voltage =1.0 p.u at bus 14 – at Base Load- IEEE 14 Bus
Appendix 6.2 UPFC in line 20- Max Psp=0.3995, Max Qsp= 0.15, Target Voltage=1.0 p.u at bus 14 – at Peak Load- IEEE 14 Bus

IEEE 30 BUS TEST SYSTEM

Appendix 6.3 UPFC- Controllable Parameters - Max Psp=0.500, Qsp = 0.25,
Target Voltage=1.0 p.u at bus 7- IEEE 30 Bus
Appendix 6.4 UPFC in the line 8 with Max Psp = 0.500, Qsp= 0.25 , Target voltage = 1.0 p.u at bus 7 - Base Load – IEEE 30 bus

Appendix 6.5 - UPFC in the line 8 with Max Psp = 0.500, Qsp= 0.25, Target Voltage= 1.0 p.u at bus 7 - Peak Load – IEEE 30 bus
IEEE 57 BUS TEST SYSTEM

Appendix 6.6 - UPFC Parameters – in the line 46 at bus 32 - Max Psp = 0.18, Qsp = 0.10, Target Voltage = 1.0 p.u – IEEE 57 Bus

Appendix 6.7 - UPFC in the line 46 at bus 32 - Max Psp = 0.18, Qsp = 0.1, Target Voltage = 1.0 p.u at Base Load – IEEE 57 Bus
Appendix 6.8 – UPFC in the line 46 at bus 32 Max $P_{sp} = 0.18$, $Q_{sp} = 0.10$, Target Voltage = 1.0 p.u at Peak Load - IEEE 57 Bus

Appendix 13.1 – GA Result – bstx for minimum loss - IEEE 14 Test Bus
Appendix 13.2 – GA Result – bstx for minimum loss- IEEE 30 Test Bus

<table>
<thead>
<tr>
<th>No.</th>
<th>Bus Voltage</th>
<th>Angle</th>
<th>------</th>
<th>--------</th>
<th>--------</th>
<th>Injected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>27.9601</td>
<td>0.860</td>
</tr>
<tr>
<td>2</td>
<td>1.0000</td>
<td>-0.254</td>
<td>21.700</td>
<td>12.700</td>
<td>60.970</td>
<td>-1.518</td>
</tr>
<tr>
<td>3</td>
<td>0.9913</td>
<td>-2.038</td>
<td>3.400</td>
<td>1.200</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.9978</td>
<td>-2.288</td>
<td>7.400</td>
<td>1.600</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>1.0000</td>
<td>-1.972</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>0.9721</td>
<td>-2.057</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>0.9954</td>
<td>-3.684</td>
<td>22.800</td>
<td>10.800</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>0.9975</td>
<td>-3.162</td>
<td>30.000</td>
<td>30.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>0.9971</td>
<td>-4.038</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>0.9971</td>
<td>-4.038</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>0.9871</td>
<td>-4.038</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>