Contents

1 Prologue 01

1.1 Preamble 01
1.2 Overview of Biometrics 01
1.3 Applications 04
1.4 Face Recognition 05
 1.4.1 Partial Visibility Cases 07
 1.4.2 Related Applications 07
1.5 Literature Survey 08
1.6 Motivation 11
1.7 Validity Measures 11
1.8 Research Overview and Contributions 13
1.9 Organization of the Thesis 13

2 Regression Analysis Approach for Partial Face Recognition 15

2.1 Preamble 15
2.2 Challenges 16
2.3 Proposed Model 17
 2.3.1 Pre-processing Stage 18
 2.3.2 Feature Extraction: Parameters Extraction 19
 2.3.2.1 RGB to Gray Conversion 19
3 Fusion Approach for Partial Face Recognition

3.1 Preamble

3.2 Proposed Model

3.2.1 Pre-processing Stage

3.2.2 Feature Extraction

3.2.2.1 Color

3.2.2.2 Texture

3.2.2.3 Shape

3.2.3 Geometrical Transformations

3.2.3.1 Scaling

3.2.3.2 Translation

3.2.3.3 Rotation
3.2.4 Classification

3.2.4.1 Nearest Neighbour Classifier

3.2.4.2 SVM Classifier

3.3 Algorithms

3.4 Conclusion

4 Graph Representation for Partial Face Recognition

4.1 Preamble

4.2 Challenges

4.3 Template Matching and its Limitations

4.4 Proposed Model: Template Matching

4.5 Proposed Model: Graph based representation

4.5.1 Pre-processing

4.5.2 Feature Extraction

4.5.3 Partitioning-based clustering algorithm

4.5.4 Scale Invariant Feature Transform

4.6 Experimental Results

4.7 Conclusion

5 Detection of a Person in Crowd: An Application to Partial Face Recognition

5.1 Preamble
5.2 Proposed Model

5.3 Design Issues

5.3.1 Pre-processing

5.3.1.1 Input RGB color images

5.3.1.2 Conversion of color space

5.3.2 Skin color segmentation

5.3.3 Noise reduction using morphological operation

5.3.4 Shape extraction form face by morphological reconstruction

5.4 Experimental Results and Analysis

5.4.1 Classification

5.4.1.1 NN Classifier

5.4.1.2 SVM Classifier

5.4.1.3 HMM Classifier

5.4.1.4 Classifier Fusion

5.4.2 Results

5.5 Conclusion

6 Comparative Analysis

6.1 Preamble

6.2 Comparative Analysis of the Proposed Models

6.3 Comparative analysis against the State of the art Models

6.4 Conclusion