In this chapter, some closed sets of the Stone-Čech compactification are obtained to be the fixed point set of a continuous map, or a homeomorphism. This gives interesting results concerning βN. The corresponding equivariant analogues are also studied. Throughout this chapter, $n \in N$. The following result of Vermeer [30] is frequently used:

"If X is a locally compact extremally disconnected Tychonoff space and $f:X \to X$ is a continuous map, then $\text{Cl}_{\beta n}(\text{fix}(f)) = \text{fix}(\beta f)$."
8.1 βX and CIP

In this section, we obtain that under some conditions, certain closed sets of βX are the fixed point sets of continuous self-maps on βX.

Proposition 8.1.1 Let X be a locally compact extremally disconnected Tychonoff space having CIP. If F is a nonempty closed set of βX such that $F = Cl_{\beta X}H$, for some closed set H in X, then there exists a continuous map $\varphi : \beta X \to \beta X$ such that $f_{\beta X}(\varphi) = F$.

Proof. Since X has CIP, hence there exists a continuous map $f : X \to X$ such that $fix(f) = H$. In [30], it has been obtained that $Cl_{\beta X}(fix(f)) = fix(\beta f)$, where $\beta f : \beta X \to \beta X$ is the Stone extension of f. Thus $fix(\beta f) = Cl_{\beta X}(H) = F$. This proves the result.

Recall the following.

Proposition 8.1.2 [32] Let F be a clopen subset of βN. Then $F = Cl_{\beta N}A$, for some subset A of N.

Martin [15] has obtained that βN does not possess CIP. Hence not all closed subsets of βN are the fixed point sets of continuous self-maps on βN. The following proposition gives that the clopen subsets of βN enjoy this property.
Proposition 8.1.3 Every clopen subset of βN is the fixed point set of a continuous self-map on βN.

Proof. Let F be a clopen subset of βN. Then $F=\text{Cl}_{\beta N}A$, for some subset A of N by Proposition 8.1.2. Since N is locally compact extremally disconnected Tychonoff and has CIP, the result follows by Proposition 8.1.1.

8.2 βX and CIPH

Besides proving that βX does not possess CIPH, in general, it is also proved in this section that the clopen sets of βN are precisely the subsets which are the fixed point sets of self-homeomorphisms on βN. Recall that, if every nonempty closed subset of a space is the fixed point set of a self-homeomorphism, the space is said to have CIPH.

Proposition 8.2.1 Let X be a locally compact extremally disconnected Tychonoff space having CIPH. If F is a nonempty closed set of βX such that $F=\text{Cl}_{\beta X}H$, for some closed set H in X, then there exists a homeomorphism $\varphi : \beta X \to \beta X$ such that $\text{fix}(\varphi)=F$.

Proof. Since Stone extension of a homeomorphism is a homeomorphism, the result can be proved in the same way as that of Proposition 8.1.1.
Proposition 8.2.2 Let X be an extremally disconnected Tychonoff space and let F be a nonempty closed nonopen subset of βX. Then there does not exist a one-one continuous map $h: \beta X \rightarrow \beta X$ such that $\text{fix}(h) = F$.

Proof. To the contrary assume that $h: \beta X \rightarrow \beta X$ is a one-one continuous map such that $\text{fix}(h) = F$. Since βX is compact Hausdorff and X being extremally disconnected, βX is extremally disconnected, hence $\text{fix}(h)$ is clopen [cf. Proposition 2.5.1]. This contradicts that F is not open. Hence the result follows.

The proof that $\beta \mathbb{N}$ does not possess CIP is quite tedious. Since a space possessing CIPH, has CIP, hence $\beta \mathbb{N}$ does not possess CIPH. We give below a simpler proof of the fact that $\beta \mathbb{N}$ does not possess CIPH.

Proposition 8.2.3 Let X be an extremally disconnected Tychonoff noncompact space. Then βX does not possess CIPH. In particular, $\beta \mathbb{N}$ does not possess CIPH.

Proof. Since Stone-Čech compactification of an extremally disconnected space is extremally disconnected, hence βX is extremally disconnected. Also, X being dense in βX, βX is nondiscrete. Hence by Proposition 2.5.3, βX does not possess CIPH.

Proposition 8.2.4 Every clopen subset of $\beta \mathbb{N}$ is the fixed point set of a self-homeomorphism on $\beta \mathbb{N}$.
Proof. Since N has CIPH [cf. Example 2.5.7] and Stone extension of a homeomorphism is a homeomorphism, hence the result can be proved in the same way as Proposition 8.1.3.

Proposition 8.2.5 The subsets of βN which are the fixed point sets of self-homeomorphisms on βN are precisely the clopen sets.

Proof. Since the fixed point set of a one-one continuous self-map on an extremally disconnected compact Hausdorff space is clopen [cf. Proposition 2.5.1], the result follows by Proposition 8.2.4.

8.3 βX and n-CIP

This section is devoted to the study of preservation of n-CIP by βX.

Proposition 8.3.1 Let X be a locally compact extremally disconnected Tychonoff space having n-CIP and F be a closed set of βX such that the number of elements in F is greater than or equal to n and $F = \text{cl}_{\beta X} A$, for some closed set A of X. Then there exists a continuous map $\phi : \beta X \to \beta X$ such that $\text{fix}(\phi^n) = F$.

Proof. Notice that the number of elements in A is greater than or equal to n, for otherwise, A would be closed in βX and $A = F$ and hence number of elements in F would also be less than n, a contradiction. Since X has n-CIP, there exists a continuous map $f : X \to X$ such that $\text{fix}(f^n) = A$. As in the proof of Proposition 8.1.1,
it can be obtained that $\text{fix}(f^n) = F$. The fact that $f^n = (f^n)^n$, for every $n \in \mathbb{N}$, proves that $\text{fix}((f^n)^n) = F$.

Proposition 8.3.2 Let F be a clopen subset of $\beta \mathbb{N}$ containing at least n elements. Then there exists a continuous map $f: \beta \mathbb{N} \to \beta \mathbb{N}$ such that $\text{fix}(f^n) = F$.

Proof. Since \mathbb{N} has n-CIP, the result follows by Propositions 8.1.2 and 8.3.1.

8.4 βX and n-CIPH

In this section, we obtain results corresponding to Propositions 8.2.2 and 8.2.3.

Proposition 8.4.1 Let X be an extremally disconnected Tychonoff space and let F be a nonempty nonopen closed subset of βX containing at least n elements, where $n \in \mathbb{N}$. Then there does not exist a one-one continuous map $h: \beta X \to \beta X$ such that $\text{fix}(h^n) = F$.

Proof. To the contrary assume that $h: \beta X \to \beta X$ be a one-one continuous map such that $\text{fix}(h^n) = F$, for some $n \in \mathbb{N}$. Notice that h^n is one-one and continuous. Since βX is compact Hausdorff and X being extremally disconnected, βX is extremally disconnected, hence $\text{fix}(h^n)$ is clopen by Proposition 2.5.1. This contradicts that F is not open. Hence the result follows.
Proposition 8.4.2 Let X be an extremally disconnected Tychonoff noncompact space. Then βX does not have n-CIPH. In particular, βN does not possess n-CIPH.

Proof. Let F be a closed subset of βX containing at least n elements and $F \subseteq \beta X - X$. Since X is dense in βX, F is not open. The space X being extremally disconnected, βX is extremally disconnected. The result follows by Proposition 8.4.1.

Remark 8.4.3 Let X have n-CIPH. If $f : X \to X$ is a homeomorphism, then βf is a homeomorphism. Hence, the results corresponding to Propositions 8.3.1 and 8.3.2 are true.

8.5 βX and E-CIP

In this section we obtain the equivariant analogues of Propositions 8.1.1, 8.1.2 and 8.1.3. First we recall from [27] the action induced on βX by an action of a discrete group G on a Tychonoff space X.
Induced action on \(\beta X \) [27]

Let \(X \) be a Tychonoff G-space, where \(G \) is a discrete topological group. Let \(A^p \) be the \(z \)-ultrafilter on \(X \) converging to \(p \in \beta X \). For \(g \in G \) and \(Z \subseteq X \), \(g.Z = \{ g.x : x \in Z \} \) and \(g \cdot A^p = \{ g.Z : Z \in A^p \} \). Then \(g \cdot A^p \) is a \(z \)-ultrafilter on \(X \). It corresponds to a point, say \(g.p \), in \(\beta X \). Then \(G \) acts on \(\beta X \) by the action \(\Theta : G \times \beta X \to \beta X \) defined by \(\Theta(g, p) = g.p \), where \(g \in G \) and \(p \in \beta X \). This action on \(\beta X \) is called the induced action of \(G \) on \(X \). The Stone extention \(\beta f : \beta X \to \beta X \) of an equivariant map \(f : X \to X \) is equivariant.

Proposition 8.5.1 Let \(X \) be a locally compact extremally disconnected Tychonoff G-space having E-CIP and \(\beta X \) be the Stone-Čech compactification of \(X \) with the induced action of \(G \) on \(X \). If \(F \) is a nonempty invariant closed set of \(\beta X \) such that \(F = \text{Cl}_{\beta X} H \), for some invariant closed set \(H \) in \(X \), then there exists an equivariant continuous map \(\phi : \beta X \to \beta X \) such that \(\text{fix}(\phi) = F \).

Proof. Since \(X \) has E-CIP, hence there exists an equivariant continuous map \(f : X \to X \) such that \(\text{fix}(f) = H \). In [30], it has been obtained that \(\text{Cl}_{\beta X}(\text{fix}(f)) = \text{fix}(\beta f) \), where \(\beta f : \beta X \to \beta X \) is the Stone extension of \(f \). Also \(\beta f \) is equivariant [27]. Thus \(\text{fix}(\beta f) = \text{Cl}_{\beta X}(H) = F \). This proves the result.

We now obtain the equivariant analogues of Propositions 8.1.2 and 8.1.3.

Lemma 8.5.2 Let \(N \) be acted upon by a topological group \(G \) and let \(F \) be an invariant clopen subset of \(\beta N \). Then \(F = \text{Cl}_{\beta N} A \), for some invariant subset \(A \) of \(N \).
Proof. By Proposition 8.1.2, there exists a subset A of N such that $F = \text{Cl}_{\beta N} A$. We now prove that A is invariant. Singletons are open in N and hence in βN. This proves that $x \notin F$, if $x \in N - A$. This proves that $F - A \subseteq \beta N - N$. For $g \in G$ and $a \in A$, F being invariant, $g.a \in F$. If $g.a \notin A$, then $g.a \in \beta N - N$, which is not possible because N is invariant and A is a subset of N. Hence $g.a \in A$.

Proposition 8.5.3 Let N be acted upon by a topological group G. Then every clopen subset of βN is the fixed point set of an equivariant continuous self-map on βN.

Proof. Since Stone extension of an equivariant map is equivariant, the result can be proved in the same way as that of Proposition 8.1.3 using Lemma 8.5.2.

8.6 βX and E-CIPH, E-n-CIP, E-n-CIPH

Using Lemma 8.5.2 and the fact that βf is equivariant, if $f:X \to X$ is equivariant, the corresponding equivariant analogues of Propositions 8.2.1 and 8.3.1 can be proved.