In this chapter, we show that if N is acted upon by a topological group G such that the set of stationary points is nonempty and G acts on \overline{N} such that N is invariant, then \overline{N} has E-CIP. A study regarding the preservation of complete invariance property with respect to homeomorphisms (CIPH) by one-point compactification has also been made.
7.1 One-Point Compactification and E-CIP

Let \((X, G, \Theta)\) be a \(G\)-space and \(\overline{X} = X \cup \{\infty\}\) be the one-point compactification of \(X\) acted upon by \(G\) such that \(X\) is invariant. Unless otherwise stated, \(A'\) denotes \(\overline{X} - A\) for a subset \(A\) of \(X\).

Proposition 7.1.1 Let \(\overline{X} = X \cup \{\infty\}\) be the one-point compactification of \(X\) acted upon by a topological group \(G\) such that \(X\) is invariant. Then \(g . \infty = \infty\), for each \(g \in G\).

Proof. Since complement of an invariant set is invariant, hence the result follows.

Example 7.1.2 Let \(G\) act on the set \(N\) of natural numbers such that the set of stationary points is nonempty. Let \(\overline{N} = N \cup \{\infty\}\) be the one-point compactification of \(N\). Let \(G\) act on \(\overline{N}\) such that \(N\) is invariant in \(\overline{N}\). Then \(\overline{N} - N\) being invariant, \(g . \infty = \infty\), for \(g \in G\). We show that \(\overline{N}\) has E-CIP. Notice that the open sets of \(\overline{N}\) are precisely the subsets of \(N\) and complements in \(\overline{N}\) of finite sets of \(N\) and the closed sets of \(\overline{N}\) are all finite sets of \(N\) and complements in \(\overline{N}\) of subsets of \(N\).

To show that \(\overline{N}\) has E-CIP consider a non empty invariant closed set \(F\) of \(\overline{N}\). The following cases arises:
Case(1) \(F=\{\infty\} \): Define \(f: \overline{N} \to \overline{N} \) by \(f(x)=\infty \), \(\forall x \in \overline{N} \). For an open set \(G \) of \(\overline{N} \), \(f^{-1}(G)=\overline{N} \) or \(\phi \) according as \(\infty \in G \) or \(\infty \notin G \). Hence \(f \) is continuous. Since \(f(g \cdot x)=\infty \) and \(g \cdot f(x)=g \cdot \infty=\infty \), for \(x \in \overline{N} \), hence \(f \) is equivariant.

Case(2) \(F=A \cup \{\infty\} \), where \(A \) is a nonempty invariant subset of \(N \): Define \(f: \overline{N} \to \overline{N} \) by \(f(x)=x \), for \(x \in A \) and \(f(x)=\infty \), for \(x \in A' \). For \(G \subseteq N \), \(f^{-1}(G) \subseteq N \). If \(G \) is an open set of \(\overline{N} \) such that \(\infty \in G \), then \((\overline{N}-G) \) is finite and \(f^{-1}(G) \) is \(\overline{N}-[(\overline{N}-G) \cap A] \), which is open. This shows that \(f \) is continuous. To show that \(f \) is equivariant, let \(x \in A \). Then \(g \cdot x \in A \) and \(f(g \cdot x)=g \cdot x=g \cdot f(x) \). For \(x \in (\overline{N}-A) \), \(f(g \cdot x)=\infty \) and \(g \cdot f(x)=g \cdot \infty=\infty \). Thus \(f \) is equivariant.

Case(3) \(F \) is a finite subset of \(N \): Let \(x_0 \) be a stationary point of \(N \). If \(x_0 \in F \), define \(f: \overline{N} \to \overline{N} \) by \(f(x)=x \), for \(x \in F \) and \(f(x)=x_0 \), otherwise. To show that \(f \) is continuous, let \(G \) be open in \(\overline{N} \). If \(\infty \notin G \), then \(x_0 \in G \) or \(x_0 \notin G \). If \(x_0 \in G \), then \(f^{-1}(G) \) is \((\overline{N}-(G \cap F)) \cup \{\infty\} \), which is open in \(\overline{N} \) and if \(x_0 \notin G \), then \(f^{-1}(G) \) is \(G \cap F \) which is also open. The case when \(\infty \in G \) is dealt with similarly. This shows that \(f \) is continuous. For \(x \in F \), \(g \cdot x \in F \), \(\forall g \in G \) and hence \(f(g \cdot x)=g \cdot x=g \cdot f(x) \). For \(x \in \overline{N}-F \), \(f(g \cdot x)=x_0 \) and \(g \cdot f(x)=g \cdot x_0=x_0 \). This shows that \(f \) is equivariant.

If \(F \) does not contain any stationary point, define \(f: \overline{N} \to \overline{N} \) by \(f(x)=x \), for \(x \in F \), \(f(x_0)=\infty \) and \(f(x)=x_0 \), otherwise. To prove that \(f \) is continuous, let \(G \) be open in \(\overline{N} \). If \(x_0 \notin G \), then \(f^{-1}(G) \) is \(G \cap F \) or \((G \cap F) \cup \{x_0\} \), according as \(\infty \notin G \) or \(\infty \in G \). If \(x_0 \in G \) and \(\infty \notin G \), then \(f^{-1}(G)=(F' \cup (G \cap F))-\{x_0\} \) and if \(\infty \in G \), then \(f^{-1}(G)=(F' \cup (G \cap F)) \). In any case, \(f^{-1}(G) \) is open. Hence \(f \) is continuous. To prove that \(f \) is equivariant, let \(x \in F \). Then \(g \cdot x \in F \). Now \(f(g \cdot x)=g \cdot x=g \cdot f(x) \), \(f(g \cdot x)=f(x_0)=\infty \) and \(g \cdot f(x_0)=g \cdot \infty=\infty \). For \(x \in \overline{N}-(F \cup \{x_0\}) \), \(f(g \cdot x)=x_0 \) and
Thus f is equivariant. Clearly in both the cases $\text{fix}(f)=F$. Hence \bar{N} has E-CIP, if N has a stationary point.

Proposition 7.1.3 Let X be a G-space and let \bar{X} be the one-point compactification of X such that X is invariant. If \bar{X} has E-CIP and has a nonempty invariant closed set F such that $\infty \not\in F$, then X has a stationary point.

Proof. Let F be a nonempty invariant closed set of \bar{X} such that $\infty \not\in F$. Let $f: \bar{X} \to \bar{X}$ be an equivariant continuous map such that $\text{fix}(f)=F$. Then $f(\infty) \neq \infty$. Hence $f(\infty) \in X$. By Proposition 7.1.1, $g.\infty = \infty$, for each $g \in G$. Since f is equivariant, $g.f(\infty) = f(g.\infty) = f(\infty)$, where $g \in G$, thus proving that $f(\infty)$ is stationary. This proves the result.

7.2 One-Point Compactification, CIPH and E-CIPH

Proposition 7.2.1 Let $\bar{X} = X \cup \{\infty\}$ be the one-point compactification of a compact space X. Then \bar{X} does not possess CIPH.

Proof. Since X is compact, hence it is closed in \bar{X}. Let $f: \bar{X} \to \bar{X}$ be a homeomorphism such that $\text{fix}(f)=X$. Since $\text{fix}(f)=X$, $f(\infty) \neq \infty$. Let $f(\infty) = x$, $x \in X$. Since $\text{fix}(f)=X$, hence $f(x)=x$. This contradicts that f is one-one. Hence there does not exist a homeomorphism $f: \bar{X} \to \bar{X}$ such that $\text{fix}(f)=F$. This proves that \bar{X} does not have CIPH.
Proposition 7.2.2 Let $\bar{X} = X \cup \{\infty\}$ be the one point compactification of a space X and let \bar{X} have CIPH. Then X has CIPH.

Proof. Let F be a nonempty closed set of X. Then $F \cup \{\infty\}$ is closed in \bar{X}. Since \bar{X} has CIPH, hence there exists a homeomorphism $f: \bar{X} \to \bar{X}$ such that $\text{fix}(f) = F \cup \{\infty\}$. This shows that the restriction $f/|X: X \to X$ of f to X is a homeomorphism from X to X such that $\text{fix}(f|X) = F$. Hence X has CIPH.

Proposition 7.2.3 Let $\bar{X} = X \cup \{\infty\}$ be the one-point compactification of a G-space X and let G act on \bar{X} such that X is invariant. If \bar{X} has E-CIPH, then X has E-CIPH.

Proof. Let F be a nonempty invariant closed set of X. Then $F \cup \{\infty\}$ is closed in \bar{X} and by Proposition 7.1.1, it is invariant. Since \bar{X} has E-CIPH, hence there exists a G-homeomorphism $f: \bar{X} \to \bar{X}$ such that $\text{fix}(f) = F \cup \{\infty\}$. Then $f/|X: X \to X$, the restriction of f to X is a G-homeomorphism such that $\text{fix}(f|X) = F$. Hence X has E-CIPH.