Chapter 4

On Equivariant Complete Invariance Property with respect to a Homeomorphism

In this chapter, we define E-CIPH and provide examples of spaces possessing E-CIPH. Besides other results, equivariant analogues of some of the results in [10] have been obtained. The equivariant complete invariance property with respect to a homeomorphism for the closed unit interval I acted by a topological group G has also been discussed.

For a metric space X and a subset A of X, $d(x, A)$ denotes the distance between $x \in X$ and A. It is sometimes also denoted by $d_A(x)$.
4.1 Definition

A G-space X is said to have the equivariant complete invariance property with respect to a homeomorphism (E-CIPH), if every nonempty invariant closed set of X is the fixed point set of a self G-homeomorphism on X.

4.2 Examples

4.2.1 Let X be an indiscrete G-space. Consider the identity map $Id: X \rightarrow X$. Then $\text{fix}(Id) = X$. Since Id is a G-homeomorphism and X is the only nonempty invariant closed set of X, therefore X has E-CIPH.

4.2.2 Let $I \times S^1$ be the cylinder and let S^1 act on $I \times S^1$ by the action defined by $\Theta(q, (x, p)) = (x, p, q)$, where $x \in I$ and $p, q \in S^1$. Then the set of stationary points is ϕ. Let F be a nonempty invariant closed set of $I \times S^1$ and d_1 be the usual metric on I and d_2 be the arc length metric on S^1. Then there exists a map $f: I \times S^1 \rightarrow I \times S^1$ defined by $f(x,p) = (x, pe^{(1/2)d_1}F(x, p))$ and $d((x, p), (y, q)) = [(d_1(x, y))^2 + (d_2(p, q))^2]^{1/2}$, where $(x, p), (y, q) \in I \times S^1$. It has been proved in [10] that f is a homeomorphism. Also f is equivariant and $\text{fix}(f) = F$ [2]. Hence $I \times S^1$ has E-CIPH.
4.3 Results on E-CIPH

Proposition 4.3.1 An open invariant subset of a G-space having E-CIPH has E-CIPH.

Proof. Let U be an open invariant subset of a G-space X having E-CIPH. Let $B=X-U$. Let A be a nonempty invariant closed subset of U. Then $X-(A\cup B)=(U-A)$ and $(U-A)$ is open in U. Since A is invariant in U and complement of an invariant set is invariant, hence $(U-A)$ is invariant in U and hence in X. Since U is open in X and $(U-A)$ is open in U, hence $A\cup B$ is closed in X. Thus $A\cup B$ is a nonempty invariant closed set of X. Since X has E-CIPH, hence there exists a G-homeomorphism $f:X\rightarrow X$ with fixed point set as $A\cup B$. Since f is a homeomorphism and $f(x)=A\cup B$, therefore $f(U-A)=U-A$. Then the restriction $f|U$ of f on U is a G-homeomorphism from U to U with fixed point set A. Hence U has E-CIPH.

Proposition 4.3.2 Let f be a G-homeomorphism from a G-space X having E-CIPH to a G-space Y. Then Y has E-CIPH.

Proof. Let F be a nonempty invariant closed subset of Y. Since f is onto, hence $f^{-1}(F)$ is nonempty. The map f being continuous, $f^{-1}(F)$ is closed in X. Also $f^{-1}(F)$ is invariant. Since X has E-CIPH, hence for the nonempty invariant closed set $f^{-1}(F)$ of X, there exists a G-homeomorphism $h:X\rightarrow X$ with fixed point set $f^{-1}(F)$. Since the composition of G-homeomorphisms is a G-homeomorphism, hence $fhf^{-1}:Y\rightarrow Y$ is a G-homeomorphism. Now to prove that $\text{fix}(fhf^{-1})=F$, let $y\in F$ and let x be such that $f(x)=y$. Then $x\in f^{-1}(F)$ and
\[(fhf^{-1})(y)=f(h(x))=f(x)=y.\] For \(z \in F\)', let \(p \in (f^{-1}(F))'\) be such that \(f(p)=z\). Then \((fhf^{-1})(z)=f(h(p))\). Since \(h(p) \neq p\) and \(f\) is one-one, hence \(f(h(p)) \neq z\). This proves that \(\text{fix}(fhf^{-1})=F\). Hence \(Y\) has E-CIPH.

Proposition 4.3.3 Let \(X\) be a \(G\)-space, where \(G=\text{Homeo}(X)\) with the discrete topology and the action of \(G\) on \(X\) be defined by \(f.x=f(x)\), for \(f\in G\) and \(x \in X\). If \(F\) is a nonempty invariant closed subset of \(X\) and there exists a \(G\)-homeomorphism \(f:X \rightarrow X\) such that \(\text{fix}(f)=F\), then the stationary points of \(X\) belong to \(F\).

Proof. Let \(a\) be a stationary point of \(X\). Since \(f\) is a self-homeomorphism on \(X\), hence \(f \in G\). Since \(a\) is a stationary point of \(X\), hence \(f(a)=a\). This implies that \(a \in \text{fix}(f)=F\). Thus \(F\) contains the stationary points of \(X\).

Proposition 4.3.4 Let \(X\) be a \(G\)-space and \(F\) be a nonempty invariant closed set of \(X\). Let \(f:X \rightarrow X\) be a \(G\)-homeomorphism such that \(\text{fix}(f)=F\). If \(F'\) contains one stationary point, then \(F'\) must contain at least two stationary points.

Proof. Let \(a\) be a stationary point of \(X\) and \(a \in F'\). Since \(\text{fix}(f)=F\) and \(f\) is one-one, therefore \(f(a) \neq a\) and \(f(a) \in F'\). For \(g \in G\), \(f(a)=f(g.a)=g.f(a)\). Thus \(f(a)\) is a stationary point and both \(a\) and \(f(a)\) belong to \(F'\). This proves the result.
4.4 I and E-CIPH

Proposition 4.4.1 Let a topological group G act on the closed unit interval I and let there exist an invariant closed subset F of I such that $0 \in F$ and $1 \notin F$. Then there does not exist a G-homeomorphism $h: I \to I$ such that $\text{fix}(h) = F$.

Proof. Suppose to the contrary that there exists a G-homeomorphism $h: I \to I$ such that $\text{fix}(h) = F$. Since $0 \in F$, hence $h(0) = 0$. Because h is one-one, $h(1) \neq 0$. The fact that a homeomorphism on I is strictly increasing or decreasing implies that $h(1) = 1$. This contradicts that $\text{fix}(h) = F$.

Proposition 4.4.2 Let a topological group G act on the closed unit interval I and let there exist an invariant closed subset F of I such that $1 \in F$ and $0 \notin F$. Then there does not exist a G-homeomorphism $h: I \to I$ such that $\text{fix}(h) = F$.

Proof. It is similar to that of Proposition 4.4.1.

Proposition 4.4.3 Let a topological group G act on the closed unit interval I and let there exist an invariant closed subset F of I such that F contains at least two elements and $0, 1 \notin F$. Then there does not exist a G-homeomorphism $h: I \to I$ such that $\text{fix}(h) = F$.

Proof. Let $a < b$ and $a, b \in F$. If there exists a G-homeomorphism $h: I \to I$ such that $\text{fix}(h) = F$, then $h(a) = a, h(b) = b, h(0) = 1$ and $h(1) = 0$. Hence h is strictly
decreasing. Since \(a < b\), hence \(h(a) < h(b)\). This contradicts that \(h\) is strictly decreasing. This proves the result.

In view of Propositions 4.4.1, 4.4.2 and 4.4.3 we have the following remark.

Remark 4.4.4 Let \(G\) act on \(I\). Then \(I\) can possess E-CIPH only if every nonempty nonsingleton closed invariant set of \(I\) contains both 0 and 1.

Remark 4.4.5 It is also clear from the proofs of Propositions 4.4.1, 4.4.2 and 4.4.3. that only singletons or closed set possessing both 0 and 1 can be the fixed point set of a self-homeomorphism on \(I\).