

biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles', Chemosphere 84 (1), 166-174.

Dalai, S., Iswarya, V., Bhuvaneshwari, M., Pakrashi, S., Chandrasekaran, N. and Mukherjee, A. (2014), 'Different modes of TiO\textsubscript{2} uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation', *Aquatic toxicology* **152** 139-146.

Fahmy, B. and Cormier, S. A. (2009), 'Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells', *Toxicology In Vitro* 23 (7), 1365-1371.

Falfushynska, H., Gnatyshyna, L., Yurchak, I., Sokolova, I. and Stoliar, O. (2015), 'The effects of zinc nanooxide on cellular stress responses of the freshwater mussels *Unio tumidus* are modulated by elevated temperature and organic pollutants', *Aquatic Toxicology* 162, 82-93.

Ivask, A., Juganson, K., Bondarenko, O., Mortimer, M., Aruoja, V., Kasemets, K.,
Blinova, I., Heinlaan, M., Slaveykova, V. and Kahru, A. (2014a), 'Mechanisms of toxic
action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms
and mammalian cells in vitro: a comparative review', Nanotoxicology 8 (sup1), 57-71.

Ivask, A., Kurvet, I., Kasemets, K., Blinova, I., Aruoja, V., Suppi, S., Vija, H., Käkinen,
to bacteria, yeast, algae, crustaceans and mammalian cells in vitro', PloS One 9 (7),
e102108.

'Polyol synthesis of Al-doped ZnO spherical nanoparticles and their UV–vis–NIR
absorption properties', Ceramics International 40 (6), 8775-8781.

Jarvis, T. A., Miller, R. J., Lenihan, H. S. and Bielmyer, G. K. (2013), 'Toxicity of ZnO
nanoparticles to the copepod Acartia tonsa, exposed through a phytoplankton diet',
Environmental Toxicology and Chemistry 32 (6), 1264-1269.

Chlorella sp', Chemical Engineering Journal 170 (2), 525-530.

and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview', Sensors
8 (8), 5153-5170.

'Characterisation of bioaccumulation dynamics of three differently coated silver
nanoparticles and aqueous silver in a simple freshwater food chain', Environmental
Chemistry 12 (6), 662-672.

Current Opinion in Colloid & Interface Science 7 (5), 282-287.

Kamat, P. V. and Meisel, D. (2003), 'Nanoscience opportunities in environmental
remediation', Comptes Rendus Chimie 6 (8), 999-1007.

Kim, S. W. and An, Y.-J. (2012), 'Effect of ZnO and TiO$_2$ nanoparticles preilluminated with UVA and UVB light on *Escherichia coli* and *Bacillus subtilis*, *Applied Microbiology and Biotechnology* **95** (1), 243-253.

Lee, W.-M., Yoon, S.-J., Shin, Y.-J. and An, Y.-J. (2015), 'Trophic transfer of gold nanoparticles from Euglena gracilis or *Chlamydomonas reinhardtii* to *Daphnia magna*', *Environmental Pollution* **201** 10-16.

Lin, D. and Xing, B. (2008), 'Root uptake and phytotoxicity of ZnO nanoparticles', *Environmental Science and Technology* **42** (15), 5580-5585.

Pakrashi, S., Dalai, S., Chandrasekaran, N. and Mukherjee, A. (2014), 'Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer
(Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia), *Aquatic toxicology* 152 74-81.

Pakrashi, S., Dalai, S., Prathna, T., Trivedi, S., Myneni, R., Raichur, A. M., Chandrasekaran, N. and Mukherjee, A. (2013), 'Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations', *Aquatic Toxicology* 132 34-45.

Pakrashi, S., Dalai, S., Sneha, B., Chandrasekaran, N. and Mukherjee, A. (2012), 'A temporal study on fate of Al₂O₃ nanoparticles in a fresh water microcosm at environmentally relevant low concentrations', *Ecotoxicology and environmental safety* 84 70-77.

Pan, B. and Xing, B. (2008), 'Adsorption mechanisms of organic chemicals on carbon nanotubes', *Environmental Science and Technology* 42 (24), 9005-9013.

Pan, J.-F. and Wang, W.-X. (2004), 'Influences of dissolved and colloidal organic carbon on the uptake of Ag, Cd, and Cr by the marine mussel *Perna viridis*', *Environmental Pollution* 129 (3), 467-477.

Pauluhn, J. (2009), 'Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size', *Toxicological Sciences* 109 (1), 152-167.

Poynton, H. C., Taylor, N. S., Hicks, J., Colson, K., Chan, S., Clark, C., Scanlan, L., Loguinov, A. V., Vulpe, C. and Viant, M. R. (2011), 'Metabolomics of microliter hemolymph samples enables an improved understanding of the combined metabolic and transcriptional responses of *Daphnia magna* to cadmium', *Environmental Science and Technology* 45 (8), 3710-3717.

Skjolding, L. M., Winther-Nielsen, M. and Baun, A. (2014), 'Trophic transfer of differently functionalized zinc oxide nanoparticles from crustaceans (Daphnia magna) to zebrafish (Danio rerio)', Aquatic Toxicology 157 101-108.

Song, W., Zhang, J., Guo, J., Zhang, J., Ding, F., Li, L. and Sun, Z. (2010), 'Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles', Toxicology letters 199 (3), 389-397.

Toensmeier, P. A. (2004), 'Nanotechnology faces scrutiny over environment and toxicity', Plastics engineering 60 (11), 14-17.

Wang, Z., Li, J., Zhao, J. and Xing, B. (2011), 'Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter', Environmental science & technology 45 (14), 6032-6040.

Xia, T., Kovochich, M., Liong, M., Mädler, L., Gilbert, B., Shi, H., Yeh, J. I., Zink, J. I. and Nel, A. E. (2008), 'Comparison of the mechanism of toxicity of zinc oxide and
cerium oxide nanoparticles based on dissolution and oxidative stress properties', *ACS Nano* **2** (10), 2121-2134.

Zhou, G.-J., Peng, F.-Q., Zhang, L.-J. and Ying, G.-G. (2012), 'Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae *Chlorella*
pyrenoidosa and Scenedesmus obliquus', *Environmental Science and Pollution Research* **19** (7), 2918-2929.

