In research investigations efforts were made to isolate fifteen compounds from \textit{P. cineraria} using flash column chromatography and the prominent compounds are Stigmasterol, octane 1,1,oxtbis, plamatic acid, lupeol, heptadecene and oleic acid. All the compounds are useful in curing different disease and these studies strength the role of \textit{P. cineraria} as an important tree and can be used for medicinal drug preparation. Palmitic acid and Heptadecene are the first isolated report from \textit{P. cineraria} whereas author isolated fifteen compounds from \textit{A. konjac} which were the first report till date. The prominent compounds are Linoleic acid, Hexadecanoic acid, beta sitosterol, stigmasterol, Octadecadienoic acid, Oxirane, and beta eudesmol trimethylsilyl ether. Most of the compounds are useful in cure of various ailments. The plants possess high number of metabolites in its tuber. Tuber is rich source of glycosides as the glycoside moieties possess terpenoids with sugar group are now a day’s very useful in medicinal chemistry. The complex sterol ring where third carbon posses -OH group is replaced by sugar moiety can enhance the potential of drugs due to its water soluble nature. These structures can be used for preparation of plant based drugs. The aim behind this study is to reveals new plants potentials as medicinal therapeutic targets.

- \textit{P. cineraria} can be used as an alternative source for Antibiotics
- \textit{campanulatus} water extract possess huge potentials antibiotic agents as glycosidic moiety present in tuber possess antimicrobial efficacy more than standard.
- \textit{konjac} possess compounds having therapeutic potentials.
Conclusions

Conclusive outlay of research work

A. konjac (Rhizome)

- Alkaloids, Steroids, Terpenoids, Flavonoids, Protein estimation
- Phytochemical Test of Plants ext.
- Compounds identified by (NMR, IR, MS and TLC)
- Protein estimation of Rhizome, Leaves
- DNA fingerprinting

Sample collection
- Leaf
- Root
- Whole plant
- Pre-treatment
- Drying
- Crushing
- Sieving
- DCM, Benzene, EtOH, Chloroform

Hot extraction
- Methanol

Phytochemical Screening
- TLC of all sample extracts
- Isolation of compound
- Flash chromatography
- HPLC

Antimicrobial testing
- Antioxidant testing by DPPH method
- Antitumor activity testing
- Protein isolation
- DNA isolation

Antimicrobial activity of compounds

Antimicrobial and antifungal, Antitumor activities, Antioxidants

Antioxidants activity By DPPH methods

DCM
- AK-D1
- AK-D2

Ethyl acetate
- AK-B1
- AK-B2

Methanol
- AK-PE1
- AK-PE2

Pet. Ether
- AK-M1
- AK-M2
- AK-M3

n-Benzene
- AK-BX1
- AK-BX2

Water

9, 12Octadecadecanone acid, methyl ester

9-Octadecadienoic acid, methyl ester

1,3hexadecadien-9-one, 2-tridecyn-12-yl

Hexadecanoic acid