Plants are the key chemical reservoirs which are used to improve the quality of human life since ages and served humans and improve the life of human in one or the other way. They are the oxygen provider and making life possible on earth (Lubna et al., 2011). The plant of *Prosopis* sps. is used to cure skin ailments, eye ailments and digestion related problems (Kirtikar and Bau, 1935; Saidman and Vilardi, 1987). In 2015 Lakshmibai and her team selected leaves of *P. juliflora* for preliminary phytochemical screening and antioxidant properties. The study focus on ethanolic and aqueous extracts of *P. juliflora* and results revealed that plant possess significant antioxidant properties and have huge number of secondary metabolites i.e. flavonoids, phenolics and alkaloids. This plant can play important role in human well being and health. (Laksmibai et al., 2015). Further, *P. juliflora* leaves were also screened for quantitative studies for secondary metabolites i.e flavonoids (16%), alkaloids (3.6%), saponnins (22%), phenols (0.66%) and tannins (0.33%). Plant is distributed in Pakistan and has high content of flavonoids (Muhammad et al., 2013). Phytochemical screening and antibacterial studies were performed for alcohol and aqueous extracts of roots of *P. cineraria* were performed and results enumerated that presence of flavonoids and tannins are detected and appreciable efficacy was found against selected microorganisms (Kuchana et al., 2014). In present studies *P. cineraria* root, stem and leaf were successively extracted. In whole plant maximum concentration of ethyl acetate extract (10.4%) whereas in leaf methanol extract concentration is maximum (20.18%) and in roots methanolic concentration is upto 24%. extracts.

The results showed that methanolic concentration is rich in *Prosopis* species and as per Ayurvedic ancient literature maximum drugs can be prepared from alcoholic. The phytochemical studies justify that maximum methanolic extract possess good amount of flavonoids and alkaloids. These secondary metabolites play a very important role in drug development. Till now more than 7000 alkaloids were
reported and all possess one or the another efficacy against ailment/disease. These studies further strength role of *P. cineraria* in herbal plant based drugs.

Amorphophallus sps is belong to an aroid family which is native to Asia. The plant is commonly known as elephant foot yam and scientifically known as *A. campanulatus* member of Araceae. Its corms are dry, pungent and acrid. The plant is used to cure kapha and vata roga (disorders), seminal weakness, anemia and other disabilities (Jain et al., 2009; Ramalingam et al., 2010).

Studies reveals that plant possess 7.36 % of methanolic extract and 11.28% of water extractives where water extract is maximum in concentration. These results also showing that plant possess saponins in maximum quantity (Srivastava et al., 2014). One more study reveal that phyto chemical constituents of *A. campanulatus* are rich in hydroalcoholic extracts. These extracts were also useful for arthritis (Firdouse and Alam, 2011; Krishna et al., 2013).

Corns of *A. campanulatus* were screened for phytochemical constituents and positive alkaloids, tannins, saponins, proteins, flavonoids presence were found (Firdouse and Alam, 2011) whereas in present investigations evaluation of the phytochemicals concentration of *A. konjac* and *A. campanulatus* were performed. Studies revealed that *A. konjac* successive extracts possess appreciable amount of secondary metabolites. Dicholormethane, ethyl acetate and methanol rich fraction
have moderate and maximum concentrations of alkaloids respectively, Methanol fraction is also rich in flavonoids and glycosides. It is also worth mentioning that this is the very first report of phytochemical screening of successive extracts of *A. konjac*. This plant is rare in Rajasthan and its presence with large number of phytochemicals further confirms its use in ethno-medicinal literature.

Studies reveals that *P. cineraria* possess alkaloids viz. spicigerine, steroids i.e. cholesterol, stigmasterol, sitosterol and campesterol whereas alcohols that are octacosanol and triacontan-1ol and alkane hentriacontane. Leaves were also reported with methyl docosanoate, dilisopropyl -9,10- dihydroxyicosane-1,20-dioate, 7,24 tirucalladien-3-one and tricosan-1-ol, dilisopropyl -10,11- dihydroxyicosane-1,20-dioate etc. (Malik and Kalidhar, 2007). Juliflorine was isolated from leaves of *P. juliflora* having inhibition activity to acetyl cholinesterase (Choudhary et al., 2005). Julioprospine, prosoflorine, julisprosine were isolated from leaves and pods of *P. juliflora* (Dos Santos et al., 2013). Patulitrin was isolated from fruits of *P. juliflora* and has activity against lung cancer (Sathiya and Muthuchelian, 2010). Mesquitol was reported from heartwood whereas piperidine alkaloids from leaves of the same species (Sirmah et al., 2011; Valli et al., 2014). Linoleic acid was reported from pods of *P. cineraria* (Liu et al., 2012) catechin was isolated from *P. flexuosa* (Tapia et al., 2000).

Studies reveal that most of the compounds were isolated and reported from *P. juliflora* other species. *P. cineraria* is not much concentrated on the studies of isolation of bioactives. In research investigations efforts were made to isolate fifteen compounds from *P. cineraria* using flash column chromatography and the prominent compounds are Stigmasterol, octane 1,1,oxsbis, plamatic acid, lupeol, heptadecene and oleic acid. All the compounds are useful in curing different disease and these studies strength the role of *P. cineraria* as an important tree and
can be used for medicinal drug preparation. Palmitic acid and heptadecene are the first isolated report from P. cineraria.

The plant possess strips like orientation on the stem which make it resemble to snake and these outline make its presence unique in plant kingdom. Researcher collected the plant from Mount Abu area where it is growing in wild. The plant is known for its traditional uses. The plant completes its life cycle in rainy season and then rhizome parts remain dormant in soil throughout the arid season.

Different researchers performed studies on bioactives and secondary metabolites isolation from A. campanulatus showing various bio-efficacies. Salviasperanol 3,5-diacetyltambulin a flavonoids having antimicrobial efficacy (Khan et al., 2008; 2009). Polysaccharide sugars were isolated from aqueous extract of corn (Das et al., 2009) Amblyone was isolated from roots of A campanulatus (Khan et al., 2010) whereas oleic acid, tetradecanoic acid, 1,3,5 benzanetriol, vitamin E, hexadecanoic acid, linoleic acid, stigmasterol, campesterol and beta sitosterol were also reported from A. campanulatus tuber (Basu et al., 2013).

Few compounds isolated from A. konjac were reported. Cis-N-(p-Coumaroyl) serotonin was isolated from, Amorphophallus konjac (Niwa et al., 2017) whereas in present piece of work author isolated fifteen compounds from A. konjac which were the first report till date. The prominent compounds are Linoleic acid, Hexadecanoic acid, beta sitosterol, stigmasterol, Octadecadienoic acid, Oxirane, and beta eudesmol trimethylsilyl ether. Most of the compounds are useful in cure of various ailments. The plants possess high number of metabolites in its tuber. Tuber is rich source of glycosides as the glycoside moieties possess terpenoids with sugar group are now a day’s very useful in medicinal chemistry. The complex sterol ring where third carbon posses -OH group is replaced by sugar moiety can enhance the potential of drugs due to its water soluble nature. These structures can be used for preparation of plant based drugs. The aim behind this study is to reveals new plants potentials as medicinal therapeutic targets.
Hospital acquired infections and multiple drug resistance in increasing day by day. People are suffering lot with MRSAs. Thus, plants and plant based drugs or formulations are becoming interest to scientist for search of new pharmaceutical drugs. (Ahmad et al., 1989). Isolated compound juliflorine was found effective against *S. faecalis*. *S. faecalis* is resistant to most of the antibiotics (Criswell, 2004; Ventola, 2015). Even methanolic extract of *P. juliflora* possess maximum efficacy against *S. aureus*. (Sukirtha et al., 2012). Many workers study on antimicrobial efficacy of *P. juliflora* against one or the other bacteria or fungi (Sing, 2012; Singh and Verma, 2011; Odhiambo et al., 2015; Thakur et al., 2014; Sheikh et al., 2012; Valli et al., 2014).

Alcoholic and hydroalcoholic extracts of roots of *P. cineraria* were screened for agar well diffusion methods. Moderate activity was found against selected test organisms and compared with ampicillin and phytochemical profile was also checked (Kuchanan et al., 2014), whereas in present investigations screening of roots and leaves were studied for antimicrobial efficacy against selected test microorganisms and methanol soluble extract of leaves showed promising results. Present investigations also prove that methanolic extract of *P. cineraria* possess potentials for preparation of herbal drugs and also further justify its role in traditional literature. Increasing the use of arid zone plant in diet will also provide additional resistance from multiple drug resistance bacteria is scientifically validate by experiments.

Various researchers performed experiment on morphological, phytochemical and antimicrobial efficacy of the Suran (vegetable plant) scientifically known as *A. campanulatus* (Krishna et al., 2013; Damle and Kotian, 2015), whereas as per the literature review antimicrobial efficacy of *A. konjac* has not been studied so far. Even NINS suggested that suran is an edible plant having potentials macro and micro elements for fulfilling the basic nutritional requirements (ICMR, 2009). These studies reveals interest of author for screening various bioefficacies to prove Ayurvedic use of the plant and its role as nutraceutical value diet plant (Damle and Kotian, 2015; Pandey and Gupta, 2013). Further, studies deals with ethno-medicinal justification of the *A. konjac* in old literature and validation on scientific lines.
Discussion

Chinese System of Medicine cited that a gel like substance is prepared from flour of A. konjac which is used as detoxifying agent, skin infections and anti tumor agent. Therefore, in present studies antimicrobial studies of A. konjac were performed. Till now no scientist focused on the successive extraction and antimicrobial efficacy of A. konjac from India. Nine microorganisms strongly pathogenic were selected and screened against extracts of A. konjac. Results of Dichloromethane were significant against S. pneumoniae and possess inhibition zone of 20 mm which is 1.25 as compare to standard. Thus, the plant can be useful for isolation of novel bio-actives from the DCM extract and bioactivity fractionation with bio-efficacy can be lead with promising results. S. pneumoniae is deadly resistant pathogenic microorganism which is the main reason of HIV infections. The DCM extract is highly non polar and possess the terpenoids and steroids in active state. DCM extract can also be used for isolation of mono and diterpenes which are volatile in nature and these potential extracts can be safely used for preparation of nasal spray in future therapeutics.

A. konjac ethyl acetate was screened for antimicrobial efficacy against S. aureus, K. pneumoniae, E. coli, S. aureus, P. mirabilis, E. cloacae, E. faecalis, and S. pneumonia. The maximum efficacy in terms of inhibition zone was shown against S. aureus and S. pneumoniae respectively (IZ = 18 mm; AI = 1.05) and (IZ = 25 mm; AI = 1.56). The inhibition zone was more than standard and the results are remarkable to use this extract as antibiotic preparation. Thus, bioactivity guided fractionation of active extracts and rich fractions will direct the evolution of new antibiotics.

Methanolic extracts also possess efficacy against S. pneumoniae (IZ = 12 mm; AI = 0.75) whereas chloroform extract have efficacy against S. pneumoniae (IZ = 11 mm; AI = 0.68).

S. pneumoniae is causing severe infections and becoming antibiotic resistant. These type of microorganisms are causing adverse effect to human health and active extract search is prime need for generation of new antibiotics.
A. *campanulatus* was also performed for antimicrobial screening and minimum inhibitory concentration where discs of 1mg/ml, 5mg/ml and 10mg/ml were prepared and the results were also appreciable. The maximum efficacy was shown by petr. ether extracts having inhibition zone against *S. sonnei* (IZ = 0.46) where is minimum results against *T. rubrum* and negative against *C. albicans*. On the other hand results of *A. campanulatus* methanolic extracts showed promising and remarkable results. Even 5mg/disc showed promising results against *P. aeruginosa* (IZ = 20 mm; AI = 1.42). These results create new magnitude and showed potentials in the use of *Amorphophallus* as drug.

Flavone rings are chemical moiety possess radial scavenging potentials. Presence of alkaloids and flavonoids in Prosopis is proving its role in antioxidant potentials. (Tapia et al., 2007). Diet of days leads to generation of free radicals these free radicals are responsible for degenerative diseases and many workers confirmed the radial scavenging potentials of Prosopis species (Sathiya and Muthuchelian, 2008) Ethanalic extract of leaves and bark of *P. Juliflora* possess phytoalkaloids and have good antioxidant efficacy (Lakshmibai et al., 2015; Siahpoosh and Mehrpeyma, 2014; Napar et al., 2012) whereas in present work focused on Methanolic extract of *P. cineraria* and *A. konjac* for antioxidant efficacy using DPPH Assay method with slight modifications. The results were appreciated and *A. konjac* antioxidant assay is the first report.

A. campanulatus commonly known as suran is used as vegetable in Indian System and part of various recipes. Screening of antioxidant efficacy using DPPH assay was performed and total phenolic content were also assessed. Methanolic extract showed activity (Ansil et al., 2011). *A paeoniifolius* was also screened for radical scavenging activity by lipid per-oxidation methods and reduction was ranging from 4.30% to 67.20% whereas in DPPH scavenging activity the maximum scavenging efficacy was 74%.(Jayaraman et al., 2010) whereas no report on *A. konjac* was found in literature till date. Thus, selection of this plant for systemic screening will be useful for standardization and validation of plants.
Discussion

Cancer is epidemic underway. Current scenario, environmental situations, global warming and eating habits are becoming alarming stage and prone for cancer. As per the calculation every fifth person is suffering from cancer or tumor related problems. Thus, cure must be search now for security of future generations.

In vitro anticancerous efficacy of various alkaloids of *P. juliflora* were performed on cancer cell lines and cytotoxicity was reported leukemia cell lines (Sathiya and Muthuchelian, 2011), even juliflorine isolated from *P. juliflora* flowers was tested against mitotic cell divisions. The compound works on chromosome aberrations. One more compound isolated from *P. juliflora* with combination of allicin can arrest divisions in mitotic spindles (Shachi, 2012) whereas in present work on screening of anticancerous efficacy of *P. cineraria* was performed by *Agrobacterium tumefaciens* both Potato agar method and disc diffusion method. In disc diffusion method the inhibition zone for various extracts was ranging from 8-10 mm which indicates appreciable efficacy of extracts against cancer. Further bioactivity guided fractionation will lead to therapeutic drug formulations.

A. paeonifolius ethanolic extracts was screened for antitumor efficacy on animals and extract showed extremely significant results P<0.001 (Jagadheesh et al., 2010) whereas no report on anticancerous efficacy of *A. konjac* was cited in literature. Therefore, screening of *A. konjac* for anticancerous efficacy is done due to its ethno-medicinal uses and tribal information that it can be useful in cancer due to its doctrine signature

A. konjac is a very rare plant in Rajasthan. Very less report on presence of *A. konjac* in the foot hills of Mt. abu were noted. Antimicrobial efficacy was performed for successive extracts and appreciable results were found. All the successive extracts were screened for selected strains of gram positive and negative nature in a dose concentration approach.

In this research work attempts were preformed to evaluate the antimicrobial efficacy of various *Amorphophallus* species with selected microorganisms. In this
process Methanolic and pet. ether extract gave positive results in compare to other extracts.

Maximum efficacy was shown by pet ether extracts against *S. sonnei* and *K. pneumonia* (10mg/disc, IZ=15, AI= 0.46) (10mg/disc, IZ=14, AI= 0.35) respectively whereas the *T. rubrum* showed very less efficacy. Some of the fungi showed the negative results i.e. *C. albicans*. In Methanolic extracts of the *A. konjac* the results were very effective and maximum efficacy was shown against *Pseudomonas aeruginosa* (5mg/disc, IZ= 20, AI= 1.42) and low against *Klebsiella pneumonia*. Therefore, these results are the first report where *A. konjac* can be used as novel antibiotic drug. Till now the flour is used of various diet purpose but this is the very first report to add its therapeutic value.

In present work attempts were made to isolate successive extracts of methanol & chloroform of *Prosopis cineraria*(Leaf) and Antimicrobial activity were performed against selected bacterial species. Methanolic extract of *P. cineraria* leaf extract showed maximum inhibition zone against *Proteus vulgaris*(AI=2.5 for 10mg/disc) and *Staphylococcus aureus*(AI= 2.09 for 5mg/disc). Therefore *Prosopis cineraria* as an arid plant which can be grown in very less rain fall is a prominent plant for use as therapeutic agent. Further, bioactivity guided fractionation of the alcoholic extract will surely reach to active extract/bioactive which can work as future antibiotics.