List of Tables

Table 1.3.3.1 : Some important single qubit Quantum Gates 1-12
Table 1.3.3.2 : Some Two qubit Quantum Gates 1-13
Table 2.3.1: Summary of Calculation for determining universal value of Set_Val 2-22
Table 4.5.1 : Nature of the Benchmark Problems 4-13
Table 4.5.1.1 : Results for determining Population Size with ARQEA (SC-I) on G01 using Objective Function Values 4-14
Table 4.5.1.2 : Result for determining Population Size with ARQEA (SC-I) on G01 by using Number Function Evaluations (NFE) 4-15
Table 4.5.1.3 : Result of Configuration Validation Testing on G01 by using Objective Function Values 4-16
Table 4.5.1.4 : Result of Configuration Validation Testing on G01 by using NFE 4-17
Table 4.5.2.1 : Results for determining Population Size with ARQEA (SC-I) on G02 using Objective Function Values with NFE limited to 500,000. 4-19
Table 4.5.2.2 : Results with Population Size (QR_Size = 10X) with ARQEA (SC-I) on G02 using Objective Function Values with NFE limited to 20,00,000. 4-20
Table 4.5.2.3 : Result of Configuration Validation Testing on G02 by using Objective Function Values with NFE limited to 500,000 4-20
Table 4.5.3.1 : Results for determining Population Size with ARQEA (SC-I) on G03 using Objective Function Values 4-22
Table 4.5.3.2 : Result for determining Population Size with ARQEA (SC-I) on G03 by using Number Function Evaluation (NFE) 4-23
Table 4.5.3.3 : Result of Configuration Validation Testing on G03 by using Objective Function Values 4-23
Table 4.5.4.1 : Results for determining Population Size with ARQEA 4-26
(SC-I) on G04 using Objective Function Values

Table 4.5.4.2 : Result for determining Population Size with ARQEA (SC-I) on G04 by using Number Function Evaluation (FES)

Table 4.5.4.3 : Result of Configuration Validation Testing on G04 by using Objective Function Values

Table 4.5.5.1 : Results for determining Population Size with ARQEA (SC-I) on G05 using Objective Function Values with NFE limited to 500,000.

Table 4.5.5.2 : Result of Configuration Validation Testing on G05 by using Objective Function Values with NFE limited to 500,000

Table 4.5.6.1 : Results for determining Population Size with ARQEA (SC-I) on G06 using Objective Function Values

Table 4.5.6.2 : Result for determining Population Size with ARQEA (SC-I) on G06 by using Number Function Evaluation (NFE)

Table 4.5.6.3 : Result of Configuration Validation Testing on G06 by using Objective Function Values

Table 4.5.7.1 : Results for determining Population Size with ARQEA (SC-I) on G07 using Objective Function Values with NFE limited to 500,000.

Table 4.5.7.2 : Result of Configuration Validation Testing on G05 by using Objective Function Values with NFE limited to 500,000

Table 4.5.8.1 : Results for determining Population Size with ARQEA (SC-I) on G08 using Objective Function Values.

Table 4.5.8.2 : Result for determining Population Size with ARQEA (SC-I) on G08 by using Number Function Evaluation (NFE)

Table 4.5.8.3 : Result of Configuration Validation Testing on G08 by using Objective Function Values

Table 4.5.9.1 : Results for determining Population Size with ARQEA (SC-I) on G09 using Objective Function Values with NFE limited to 500,000

Table 4.5.9.2 : Result of Configuration Validation Testing on G09 by using Objective Function Values with NFE limited to 500,000

(xxiv)
Table 4.5.10.1: Results for determining Population Size with ARQEA (SC-I) on G10 using Objective Function Values with NFE limited to 500,000.

Table 4.5.10.2: Result of Configuration Validation Testing on G10 by using Objective Function Values with NFE limited to 500,000

Table 4.5.11.1: Results for determining Population Size with ARQEA (SC-I) on G11 using Objective Function Values

Table 4.5.11.2: Result for determining Population Size with ARQEA (SC-I) on G11 by using Number Function Evaluations (NFE)

Table 4.5.11.3: Result of Configuration Validation Testing on G11 by using Objective Function Values

Table 4.5.12.1: Results for determining Population Size with ARQEA (SC-I) on G12 using Objective Function Values

Table 4.5.12.2: Result for determining Population Size with ARQEA (SC-I) on G12 by using Number Function Evaluation (NFE)

Table 4.5.12.3: Result of Configuration Validation Testing on G12 by using Objective Function Values

Table 4.5.13.1: Results for determining Population Size with ARQEA (SC-I) on G13 using Objective Function Values with NFE limited to 500,000.

Table 4.5.13.2: Result of Configuration Validation Testing on G13 by using Objective Function Values with NFE limited to 500,000

Table 4.6.1: Experimental Results for Comparative Study 4-56

Table 5.2.1: Comparison of Constraint Handling Techniques 5-7

Table 5.2.1.1: Experimental Results with Feasibility Rules as Constraint Handling Technique

Table 5.2.4.1: Experimental Results of Feasibility Rules method and Adaptive Penalty Factor with SAPF = 0 and Swapping function in CFG-I

Table 5.2.4.2: Experimental Results of Feasibility Rules method and Adaptive Penalty Factor with SAPF = 0 and without Swapping function in CFG-I

(xxv)
Table 5.3.1: Experimental Results for CFG-I .. 5-15
Table 5.3.2: Experimental Results for CFG-II .. 5-16
Table 5.3.3: Experimental Results for Complementary behavior of Feasibility Rules and Adaptive Penalty Factor Parts in CFG-II 5-17
Table 5.3.4: Experimental Results of Comparative Study between Feasibility Rules, Stochastic Ranking, CFG-I and CFG-II .. 5-18
Table 6.3.1. Results for all the configurations in Problem P-1 6-7
Table 6.3.2. Results for all the configurations in Problem P-2 6-10
Table 6.3.3. Results for all the configurations in Problem P-3 6-11
Table 6.3.4: Results for all the configurations in Problem P-4 6-14
Table 6.3.5. Results for all the configurations in Problem P-5 6-16
Table 6.3.6. Results for all the configurations in Problem P-6 6-18
Table 6.3.7. Comparison of the proposed Algorithm (SC-I) with known Algorithms on their Best Solution .. 6-20
Table 7.1.3.1: Result of Ceramic Grinding Process modelled as Nonlinear Continuous Constrained Optimization Problem with ARQEA (Median) 7-7
Table 7.1.3.2: Results with model as Nonlinear Mixed Integer Constrained Optimization Problem with ARQEA .. 7-8
Table 7.1.3.3: Statistical Analysis of Efficiency of ARQEA on Mixed Integer model ... 7-9
Table 7.1.3.4: Comparison of ARQEA with GA, DE, PSO and NM-PSO 7-11
Table 7.1.3.5: Result of Post-optimal Robustness Analysis 7-14
Table 7.2.4.1 Generator data for New England System 7-21
Table 7.2.4.2 Load Demand over the Span of 12 hours 7-22
Table 7.2.4.3 Comparison of Best Costs obtained for Example 1 7-22
Table 7.2.4.4 Best, Worst and Average solutions obtained by HSSDED, ERQEA and ARQEA on example 1 in 20 different runs 7-22

(xxvi)
Table 7.2.4.5 Best Solution obtained by HARQEA for example 1 7-23

Table 7.3.3.1: Results of Ea and Do parameter estimation and the corresponding errors for all the five test-cases described in the text using ARQEA 7-29

Table 7.3.3.2: Results of statistical analysis of efficiency of ARQEA in all the five test-cases described in the text 7-29

Table 7.3.3.3: Comparative Results of ARQEA, GA and LSA 7-33

Table 7.5.4.1. Comparison of MOO-ARQEA with GA, TS, SA and PSO 7-46