CHAPTER 1 - INTRODUCTION

1.1 Introduction 1
1.2 Bangalore Metropolitan Region 4
1.3 Study Area 6
1.4 General 7
 1.4.1 Topography and Relief 7
 1.4.2 Pedology 8
 1.4.3 Drainage 8
 1.4.4 Climate 8
1.5 Objective of the Study area 9
1.6 Scope of Investigation 11
1.7 Source of Information 13
1.8 Review of Literatures 14

CHAPTER 2 - GEOLOGY AND SOILS

2.1 Introduction 17
2.2 Regional Geology 19
 2.2.1 Peninsular Gneissic Complex 20
 2.2.2 Shistose Rocks 20
 2.2.3 Charnockite Suite 21
2.3 Geology of the study area 24
 2.3.1 General 24
 2.3.2 Basement Gneisses 24
 2.3.3 Closepet Granitoid 25
 2.3.4 Younger Intrusives 26
2.4 Structure 27
2.5 Water bearing properties of different rock units 27
2.6 Soils of the study area 30
 2.6.1 Laterite soil 30
 2.6.2 Red Loamy soil 30
 2.6.3 Red Sandy soil 31
2.7 Soils and ground water 31

CHAPTER 3 - GEOMORPHOLOGY

3.1 Introduction 39
3.2 Quantitative Geomorphology 40
3.3 Material and Methods 42
3.4 Geomorphology of the study area 43
 3.4.1 Slope 43
 3.4.2 Land use land cover 44
3.4.3 Lineaments 45
3.4.4 Watershed 45

3.5 Morphometric Parameters 46
3.5.1 Stream Order (Nu) 46
3.5.2 Stream length (Lu) 46
3.5.3 Mean stream length (Lu/Nu) 47
3.5.4 Stream Length ratio (RL) 47
3.5.5 Bifurcation Ratio (Rb) 47
3.5.6 Drainage density 48
3.5.7 Stream frequency/channel frequency 49
3.5.8 Drainage texture or Texture ratio 49

3.6 Aerial Aspects 50
3.6.1 Form factor (Rf) 50
3.6.2 Circularity ratio (Rc) 50
3.6.3 Elongation ratio (Re) 50
3.6.4 Compactness constant (Cc) 51
3.6.5 Length of Overland Flow (Lof) 51
3.6.6 Constant of Channel Maintenance (Ccm) 52
3.6.7 Discussion and Conclusion 52

CHAPTER 4 - HYDROMETEOROLOGY 65 - 81

4.1 Introduction 65
4.2 Data Source 66
4.3 Theissson polygon method 66
4.4 Precipitation 67
4.4.1 Intensity of Rainfall 67
4.4.2 Seasonal Distribution of Rainfall 68
4.4.3 Recharge and Discharge over the study area: 68
4.5 Temperature: 69
4.6 Relative Humidity: 69
4.7 Wind speed: 69
4.8 Evapotranspiration; 70
4.8.1 Potential Evapotranspiration: 70
4.8.2 Actual Evapotranspiration: 71
4.9 Soil Moisture Index 72
4.10 Climatic Types 73

CHAPTER 5 - REMOTE SENSING AND GIS 82 - 131

5.1 Introduction 82
5.2 Remote sensing and GIS 83
5.3 Electromagnetic Energy 85
5.4 Principles and Process of Remote Sensing 86
5.5 Spectral Reflectance Signature 88
5.6 Methodology 90
5.7 Visual Interpretation 91
5.7.1 1-Tone: 91
5.7.2 2-Shape: 91
5.7.3 3-Size 91
5.7.4 4-Pattern 92
5.7.5 5-Texture 92
5.7.6 6-Shadow 92
5.7.7 7-Association 93
5.8 Application of geographical information system. 93
5.8.1 Hydro-geomorphology 93
5.8.2 Pediplanes/Pediments 94
5.8.3 Water body 94
5.8.4 Agriculture 94
5.8.5 Forest 94
5.8.6 Wasteland 95
5.8.7 Built up land 95

5.9 Groundwater Potential Zones 97
5.9.1 Methodology 97
5.9.2 Description of Thematic Maps 97
5.9.3 Geomorphology (N1) 97
5.9.4 Slope (N2) 98
5.9.5 Land Use Land Cover (LuLc) (N3) 99
5.9.6 Lineament Density (N4) 99
5.9.7 Soil (N5) 99
5.9.8 Drainage density (N6) 100
5.9.9 Geology (N7) 100
5.9.10 Overlay Analysis 103
5.9.11 Integration 104
5.9.12 Results 107

5.10 Soil Erosion 110
5.10.1 Material and methods 111
5.10.2 Runoff Estimation 112
5.10.3 Universal Soil Loss Equation (USLE) 112
5.10.4 Soil loss in Nelligudde Watershed 113
5.10.5 Results 116

5.11 Morphometric analysis 117
5.11.1 Dem to Drainage Extraction 117
5.11.2 Material and Methods 121
5.11.3 Discussion and Conclusion 130

CHAPTER 6 - GROUNDWATER 132 - 171

6.1 Introduction 132
6.2 Water bearing properties of rocks 133
6.3 Evaluation of Groundwater Resources 134
6.4 Groundwater resources in India 135
6.5 Occurrence of Groundwater in the study area 135
6.6 Water Level Fluctuations 136
6.6.1 Monsoon Groundwater table fluctuation 136
6.6.2 Post – monsoon Groundwater table fluctuation 137
6.6.3 Annual Groundwater table fluctuation 137
6.6.4 Seasonal Recharge and Discharge Rainfall over the study area 138

6.7 Flow Net Analysis 139
6.8 Aquifer Characteristics in the representative study area 140
6.8.1 Pump test data acquisition 141
6.8.2 Single well tests advantages 141
6.8.3 Single well test disadvantages 142
6.8.4 Pump test data interpretation 142
6.8.5 Jacob Straight Line Method 142
8.3.5 Iron (Fe) 225
8.3.6 Chloride (Cl) 225
8.3.7 Nitrate (NO₃) 226
8.3.8 Sulphate (SO₄) 227
8.3.9 Alkalinity (CO₃ and HCO₃) 227
8.3.10 Fluoride (F) 228
8.3.11 Total Hardness (TH) 229
8.3.12 Total Dissolved Solids (TDS) 230
8.3.13 Specific Electrical Conductance (EC) 231
8.3.14 Hydrogen Ion Concentration (pH) 232
8.3.15 Corrosivity Ratio (CR) 233

8.4 Presentation of Chemical Analysis Data and Classification 233
8.4.1 Piper's Trilinear Diagram 234
8.4.2 Water Quality Criteria for Domestic Usage 235
8.4.3 Water quality Criteria for Agriculture 236
8.4.4 U.S. Salinity and Alkalinity Hazard 237
8.4.5 Sodium Absorption Ratio (SAR) 237
8.4.6 SAR vs EC: 238
8.4.7 Residual Sodium Carbonate (RSC) 240
8.4.8 Percent Sodium (Na %) 241
8.4.9 Chloride and Sulphates in Agricultural Water 242
8.4.10 Doneen's Permeability Index (Pi) 243

CHAPTER 9 - DISCUSSION AND CONCLUSION 262 - 270
REFERENCES
Abstracts of Published Research Papers