ACKNOWLEDGMENTS

Foremost, I bow my head to the lotus feet of the Almighty God, for HIS Infinite Grace and Mercy that has given me strength at every step.

First of all, I would like to express my sincere gratitude to my advisor Prof. (Mrs.) Vibha R. Satsangi for the continuous support of my Ph.D study and research, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped while doing experimentation during research and writing of this thesis. I could never have imagined a better advisor and mentor for my Ph.D study. She has always stood by my side, anywhere, anytime given time for discussion on scientific issues amidst from her busy schedule. I am really very fortunate to have Prof. (Mrs.) Satsangi as my advisor in my life. I am very thankful to her and will always be indebted for her great and invaluable support.

Besides my advisor, I have to tender my humble thanks to Prof. Satish Kumar, Head, Department of Physics & Computer Science, Prof. L.D. Khemani, Dean, Faculty of Science, D.E.I., for his concerned behavior and encouragement.

My deep sense of gratitude is due to Prof. Sahab Dass, Department of Chemistry and Prof. Rohit Shrivastav, Department of Chemistry, D.E.I., for their regular help support and encouragements during my Ph.D work. They really enabled me to overcome all the practical problems at crucial junctures without which this work could not have been completed.

I feel a deep sense of gratitude to Prof. V. G. Das, Director, D.E.I. for always being source of inspiration and invaluable support.

I avail this opportunity to express my heartiest thanks to Dr. Ambuj Tripathi, Dr. D.K. Avasthi, Mr. Pawan Kulriya, Dr. Fouran Singh, Mr. Saif A. Khan, Mr. Pravin Kumar and Ms. Indra Sulaniya Scientist, Inter University Accelerator Centre, New Delhi under whose inspiring guidance and never ending interest in this work has initiated many discussions and helped me to plan the experiments especially related to irradiation studies and also in analyzing the results.

My sincere thanks also goes to Prof. Michael R. Zachariah, Prof. Sheryl H. Ehrman and Prof. Ray Adomaitis for offering me the internship opportunities in their groups.
at UMCP, Maryland, USA and leading me working on diverse exciting projects. Their steadfast co-operation and valuable suggestions helped me to overcome numerous research problems and to execute the experiments smoothly planned during my UMD, Maryland visit and also in analyzing the results.

I wish to express my gratitude and thank to all my teachers in the Department of Physics & Computer Science, D.E.I. Prof. G. S. Tyagi, Dr. C. M. Markan, Dr. C.V. Laxmi, Dr. Sukhdev Roy, Dr. Sanjay Saini, Dr. K. S. Daya and Dr. Lotika Singh for their valuable cooperation and encouragement.

Most of the results described in this thesis would not have been obtained without a close collaboration with few laboratories. The road to my Ph.D started with training at Dept. of Phys. & Astrophysics, Delhi University. I take this opportunity to say heartful thanks to Dr. Vinay Gupta. I owe a great deal of appreciation and gratitude to Dr. Karen Gaskell and Dr. Lai at University of Maryland, College Park, USA for Raman, XPS and SEM studies. My heartfelt thanks to Dr. Dinesh Deva and Dr. C.S. Sharma at IIT Kanpur for SEM studies.

I would like to thank all my friends and colleagues in my group, with whom I have worked, and because of whom my Ph.D experience has been one that I will cherish forever. I would also like to give a special thanks to my colleague Dr. Aadesh P. Singh, who introduced me to the Ph.D program and to this research group. I would like to thank Dr. Saroj Kumari, who was a Post-doc student in our lab and mentoring me during my first year of Ph.D. I would like to thank Dr. Zhou Li, Dr. Ma Xiaofei at UMD and Dr. D. C. Agrawal at IUAC, New Delhi with whom I have had the great pleasure of collaborative work.

I am thankful to Mr. Y.S. Sandhu, Mr. Ranjeet Kumar and Amol for their technical assistance.

I take this opportunity to sincerely acknowledge the Department of Science and technology (DST), Government of India, New Delhi, for providing financial assistance in the form of Junior Research Fellowship and National Science Foundation (NSF), USA which buttressed me to perform my work comfortably.

Last but not the least; I would like to thank my family: my mother, for giving birth to me at the first place and supporting me spiritually throughout my life. I wish to thank for the support I receive from, my loving younger sister, Ms. Meenakshi
Sharma, my elder sister Mrs. Kavita Sharma and Jiju Mr. Om Sharma, My elder brother Mr. Yogesh Sharma, bhabhi Mrs. Mansi Sharma and my cutest niece Anaya. I am thankful to all wonderful roomies and friends, whose foresight and values paved the way for a privileged education.

This thesis is the end of my journey in obtaining my Ph.D. I have not traveled in a vacuum in this journey. This thesis has been kept on track and been seen through to completion with the support and encouragement of numerous people including my well-wishers, my friends, colleagues and various institutions. At the end of my thesis I would like to thank all those people who made this thesis possible and an unforgettable experience for me. At the end of my thesis, it is a pleasant task to express my thanks to all those who contributed in many ways to the success of this study and made it an unforgettable experience for me.

May, 2012

(Poonam Sharma)
VISITS ABROAD

1. Worked at "University of Maryland", College Park, USA as a "Faculty Research Assistant" at "Department of Chemical and Biomolecular Engineering" and "Department of Mechanical Engineering" from 12th November 2010 to 6th Dec 2011 under the DST-NSF Collaborative Research Project No. NSF DMR086610. There, I worked on carbon/iron oxide and graphene oxide/iron oxide based layered oxides for solar hydrogen production and determining its effects on structural, surface morphological, optical, electrical and photoelectrochemical properties. Attended a short term course on SEM and Raman instrument operation. Performed Raman depth profile measurements for interface study of bilayered metal oxides. SEM and XPS experiments were performed on the swift heavy ion induced modified TiO₂ and Fe₂O₃ thin films for solar hydrogen production.

2. Visited “Boston, Massachusetts, USA” for 2010 MRS Fall Meeting during 29th Nov–3rd Dec 2010 and presented a paper entitled “Nanostructured Fe-TiO₂ thin film modified by Zn-Fe₂O₃ for solar hydrogen generation” in the oral session.

PROFESSIONAL TRAINING

• Attended a one week workshop on "Electron Microscopy" organized by: Maryland Nanocenter, University of Maryland, College Park, USA. (May 11th-18th, 2011)

RESEARCH PROJECTS WORKED UNDER:

• Worked as JRF from Mar 1st 2008 to Mar 31st 2010 and as SRF from Apr 1st 2010 to Oct 30th 2010 in DST sponsored research project entitled, “A Study on Multilayered Nanostructured Metal Oxide Thin Films for Solar Hydrogen Production” at DEI, Dayalbagh, Agra

• Worked as Faculty Research Assistant on DST-NSF collaborative research project entitled, “Transition Metal Oxide Based Nanoarchitecture for Photoelectrochemical Hydrogen Generation” at UMCP, Maryland, USA (Nov 2010-Dec 2011)

AWARDS

• A Beam Time Account (BTA) of three runs of two shifts each was approved against the presentation made to Accelerator Users Committee of Inter University Accelerator Centre (IUAC), Delhi on Dec 17-18, 2009.
Publications: Research Articles (Published/Communicated)

Following is the list of research publications, which are the outcome of the work carried out by me.

3. PEC system for hydrogen generation using Zn doped Fe\textsubscript{2}O\textsubscript{3}/TiO\textsubscript{2} bicomponent. Proceedings of Int. Conf. on Nanotechnology in chemistry, Health, Energy and Environment, (NATCHEE-2010). (Conf. Proceedings)

11. Structural and morphological changes induced by swift heavy ions in spray pyrolytically deposited nanostructured iron oxide thin films. *J. Mat. Chem. Phys. (Communicated)*

12. A photoelectrochemical study on carbon coated nanoporous iron oxide thin films, *J. Electrochem Soc. (Communicated)*

13. Effect of swift heavy ion irradiation on photoelectrochemical properties of bilayered Zn-Fe\textsubscript{2}O\textsubscript{3}/Fe-TiO\textsubscript{2} thin films, *Int. J. Hydrogen Energy*, (Communicated)
1. Solar Splitting of Water using SHI Modified Nanostructured Hematite in International Conference and Workshop on Nanostructured Ceramics and other Nanomaterials ICWNCN-2012, Department of Physics and Astrophysics, University of Delhi, Delhi, India (13 Mar – 16 Mar, 2012).

10. Nanostructured Fe-TiO$_2$ thin film modified by Zn-Fe$_2$O$_3$ for solar hydrogen generation in MRS Fall Meeting, Boston, Massachusetts, USA (29 Nov- 3 Dec, 2010).

11. 100Mev Si$^{8+}$ ion beam induced modification on structural, optical, morphological and photoelectrochemical properties of electrodeposited iron oxide thin films” Swift Heavy Ion in Material Engineering and Characterization (SHIMAC-2010), IUAC New Delhi, (6 Oct -9 Oct, 2010).

12. 100 MeV Si$^{8+}$ ion beam induced modification on structural, morphological and photoelectrochemical properties of nanostructured Fe$_2$O$_3$/TiO$_2$ bilayered thin
films, Swift Heavy Ion in Material Engineering and Characterization (SHIMAC-2010), IUAC New Delhi, India (6 Oct – 9 Oct, 2010).

13. A Study on Structural, optical and morphological properties of α-Fe₂O₃, TiO₂ and TiO₂/Fe₂O₃ thin films for photoelectrochemical application, European Crystallographic Meeting ECM 26, Darmstadt, Germany (27 Aug – 30 Aug, 2010).

14. 120 MeV Ag⁺ ion beam induced modification on structural, morphological and photoelectrochemical properties of nanostructured Fe₂O₃/TiO₂ bilayered thin films, 17th International Conference on Ion Beam Modification of Materials, IBMM 2010, Montreal Canada (23 Aug - 27 Aug, 2010).

List of notations/abbreviations/symbols used

at.% Atomic percentage
A Surface area of the metal-semiconductor junction
a/m Air mass ratio
AFM Atomic force microscopy
B_M FWHM value of material
B_S FWHM value of standard material
C Capacitance at semiconductor/electrolyte junction
c Velocity of light
CB Conduction band
CE Counter electrode
α Absorption coefficient
α-Fe_2O_3 α-phase of Fe_2O_3 (i.e. hematite)
γ-Fe_2O_3 γ-phase of Fe_2O_3 (i.e. magnetite)
DOS Density of states
ε^- Electron
ε_o Permittivity of free space
E_c Energy of the conduction band edge
E_f Fermi level in the bulk of the semiconductor
E_FS Fermi level at the semiconductor surface
E_g Bandgap energy
E_redox Redox potential
E_i Energy at equilibrium
E_v Energy of valence band edge
ε Relative permittivity of the semiconductor
FWHM Full width at half maxima
f(E) Fermi-Dirac energy distribution function
h Planck's constant
h^+ Holes present in semiconductor
JCPDS-ICDD Joint Committee on Powder Diffraction Standards-
International Centre for Diffraction Data
I-V Current-voltage
k Dielectric constant
k_B Boltzmann’s constant
L_D Debye length
\lambda Wavelength of radiation
M Molarity
n Electron concentration
L_h Diffusion length of holes
N_d Donor density
NHE Normal hydrogen electrode
NSEI Nanostructured semiconductor/electrolyte interface
PEC Photoelectrochemical
pH^- \log_{10}[H^+]
\Delta \Phi_{sc} Total potential drop within the semiconductor
\theta Angle of incidence of the X-ray beam
q Electronic charge
r_o Radii of very small semiconductor particles
SC Semiconductor
SCE Saturated calomel electrode
SEM Scanning electron microscopy
STH Solar to hydrogen conversion efficiency
TiO_2 Titanium dioxide
UV Ultra violet
\mu_n Mobility of electron
\mu_p Mobility of hole
\mu_i Mobility of ions
\nu Frequency
V_{app} Applied potential
VB Valence band
V_{fb} Flatband potential
V_{bias or E} Applied bias voltage
V_{on} Onset potential
\omega_d Width of the depletion layer
XRD X-ray diffraction
XPS X-ray photoelectron spectroscopy
List of symbols used to express units of measurement

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>Angstrom unit</td>
</tr>
<tr>
<td>Amp or A</td>
<td>Amperes</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>eV</td>
<td>Electron volt</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>hrs</td>
<td>Hours</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>kcal</td>
<td>Kilocalorie</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>mbar</td>
<td>Millibar</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>°C</td>
<td>Degree celsius</td>
</tr>
<tr>
<td>sec</td>
<td>Second</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>Ω</td>
<td>Ohm</td>
</tr>
<tr>
<td>F</td>
<td>Farad</td>
</tr>
</tbody>
</table>