CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>List of Graphs</td>
<td>xii</td>
</tr>
<tr>
<td>List of Maps</td>
<td>xv</td>
</tr>
<tr>
<td>List of Plates</td>
<td>xv</td>
</tr>
<tr>
<td>Abbreviations and Symbols</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 Water resources in India | 2 |
 1.1.1. Water Resource of Karnataka | 4 |
1.2. Defining Lakes | 5 |
1.3. Significance of lakes | 6 |
1.4. Global scenario of Lakes | 6 |
 1.4.1. Indian Lakes scenario | 7 |
 1.4.2. Karnataka Lake Scenario | 7 |
1.5. History of Bengaluru Lakes | 8 |
 1.5.1. Drainage pattern and lake series in Bengaluru | 8 |
 1.5.2. Distribution of Lakes in Bengaluru | 8 |
 1.5.3. Disappearance of Bengaluru Lakes | 9 |
 1.5.4. Groundwater scenario in Bengaluru | 10 |
1.6. Arkavathi River Basin | 10 |
 1.6.1. Role of Arkavathi River in Bengaluru Drinking Water Supply | 12 |
 1.6.1. Demand and Supply of drinking water | 13 |
1.7. Water Quality 14
 1.7.1. Physico-Chemical characteristics 14
 1.7.2. Biological quality 15
1.8. Existing Legal and Institutional Measures for the Protection of Water Bodies in India 15
 1.8.1. Protection Laws and Government initiatives to protect wetland in India 16
1.9. Scope of the study 18
 1.9.1. Objectives of the study 19

2. REVIEW OF LITERATURE 20 – 34

3. MATERIALS AND METHODS 35 - 72
3.1. Study area 35
 3.1.1. Arkavathi River Basin 37
 3.1.2. Thippagondana Halli Reservoir 48
3.2. Methodology 42
 3.2.1 Qualitative Analysis of Lake Water 42
 3.2.1.1 Selection of Sampling Area 42
 3.2.1.2. Sampling period 52
 3.2.1.3. Water sampling 52
 3.2.1.4. Ground water sampling 53
3.3. Physico-chemical analysis of water 56
 Water Quality Index 65
3.4. Plankton sampling 66
 3.4.1. Plankton 66
 3.4.1.1. Phytoplankton 67
 3.4.1.2. Zooplanktons 67
3.5. Spatial-Temporal, Drainage network and interconnectivity analysis 69
3.6. Statistical Analysis 71
4. RESULTS AND DISCUSSION

4.1. LAKE AND RIVER WATER QUALITY ANALYSIS

4.1.1. pH
4.1.2. Turbidity
4.1.3. Electrical Conductivity
4.1.4. Total Dissolved Solids
4.1.5. Total Hardness
4.1.6. Calcium Hardness
4.1.7. Magnesium Hardness
4.1.8. Chloride
4.1.9. Fluorides
4.1.10. Nitrates
4.1.11. Phosphates
4.1.12. Sulphates
4.1.13. Sodium
4.1.14. Potassium
4.1.15. Total Alkalinity
4.1.16. Dissolved Oxygen
4.1.17. Biochemical Oxygen Demand
4.1.18. Chemical Oxygen Demand
4.1.19. Water Quality index of Lakes
4.1.20. Water Quality of Arkavathi River
4.1.21. Pearson’s Correlation Coefficient of Physico Chemical Parameter of Lake Water

4.2. PLANKTON

4.2.1. Phytoplankton
4.2.1.1. Bacillariophyceae
4.2.1.2. Chlorophyceae
4.2.1.3. Cyanophyceae 148
4.2.1.4. Euglenophyceae 153
4.2.1.5. Species composition of Phytoplankton 155
4.2.1.6. Algal Pollution Index of Phytoplankton 157
4.2.1.7. Species Diversity of Phytoplankton 158
4.2.1.8. Pearson's correlation matrix of Phytoplankton 160

4.2.2. Zooplankton 163
4.2.2.1. Protozoan 165
4.2.2.2. Rotifers 169
4.2.2.3. Cladocera 173
4.2.2.4. Copepods 175
4.2.2.5. Species composition of Zooplankton 179
4.2.2.6. Species Diversity of Zooplankton 181
4.2.2.7. Pearson's correlation matrix of Zooplankton 182

4.3. EVALUATING THE INTERCONNECTIVITY OF DRAINAGE NETWORK 186
4.3.1. Land use and Land cover 186
4.3.2. Wetlands mapping 190

4.4. ASSESSMENT OF GROUND WATER QUALITY 193
4.4.1. pH 193
4.4.2. Electrical Conductivity 194
4.4.3. Total Dissolved Solids 196
4.4.4. Total Alkalinity 198
4.4.5. Total Hardness 200
4.4.6. Calcium Hardness 201
4.4.7. Magnesium Hardness 203
4.4.8. Chloride 204
4.4.9. Fluorides 206
4.4.10. Nitrates 208
4.4.11. Sulphates 210
4.4.12. Phosphates 211
4.4.13. Sodium 213
4.4.15. Groundwater depletion and contamination 216

4.5. Status of lakes and tanks in Arkavathi River Basin of Bengaluru urban 218
4.5.1. Threats for lakes and tanks 218
4.5.1.2 Reduced Storage in tanks 222
4.5.1.3 Condition of the Drainage/stream courses 222
4.5.2. Environmental Aspects 223
4.5.2.1. Solid Waste Disposal 224
4.5.2.2. Sanitation 225
4.5.2.3. Pressure on the Environment 225
4.5.2.4. Water Resources 226
4.5.2.5. Rainfall Distribution in the Arkavathi River Basin 226
4.5.2.6. Impact of Climate Change on Arkavathi River basin 227
4.5.2.7. Water Supply 228
4.5.2.8. Over exploitation of Ground water supplies 229
4.5.3. Assessment of specific sites 230
4.5.3.1. Industrialisation 230
4.5.3.2. Makali and Peenya Industrial site 231
4.5.4. Strategies for Sustainable Development of TGR 234
4.5.5. Management and Action plans 237
4.5.5.1. Action plans for sustaining quantity of inflow 238
4.5.5.2. Improvement of all other minor stream courses in the catchment 238
4.5.5.3. Restoration and rejuvenation of tanks 239
4.5.5.4. Soil and water conservation practices 242
4.5.5.5. Action Plans for sustenance of the quality of water 243
4.5.5.6. Restrictions on the developments of new layouts 244
4.5.5.7. Restriction of industrial movement in the TGR Catchment 245
4.5.5.8. Approach for Waste management 245
4.5.6. Steps to revive Arkavathi River Basin 247

5. SUMMARY AND CONCLUSION 248 – 254

REFERENCES 255 – 266

ANNEXURE i – xxxv

PUBLICATIONS I - II

ix