CONTENTS

LIST OF TABLES xv
LIST OF DIAGRAMS xvii
ABSTRACT xix

1 CHAPTER 1 INTRODUCTION 1
2 CHAPTER 2 ANTHRAX 5
2.1 Etiology 5
2.2 Anthrax - Synonyms 5
2.3 Significance of the disease 6
2.4 Anthrax and environment 6
2.4.1 Spores and its life 6
2.4.2 Activation of spores 7
2.4.3 Pathogenesis of the disease 7
2.4.4 Anthrax and season 7
2.5 Anthrax in animals 8
2.5.1 Herbivores disease 8
2.5.2 Incubation period 8
2.5.3 Clinical signs 8
2.5.4 Infection and its severity 9
2.5.5 Factors influencing anthrax 9
2.5.6 Germination of spores 10
2.5.6.1 Germination in host 10
2.5.6.2 Germination in the environment 10
2.5.6.3 Findings on Temperature, pH and Relative humidity 10
2.5.7 Anthrax transmission 11
2.5.7.1 Disease acquisition 11
2.5.7.2 Disease Transmission 11
2.5.7.3 Transmission due to deliberate release – bio aggression 11
2.5.8 Treatment 12
2.5.9 Prevention 12
2.5.9.1 Vaccination 12
2.5.9.2 Management methods 12
2.6 Anthrax in human beings

2.6.1 Clinical signs
2.6.2 Transmission
2.6.3 Treatment
2.6.4 Prevention
2.6.5 Vaccination
2.6.6 Disinfection

2.7 Geographic Distribution

2.8 Anthrax in India

3 CHAPTER 3 REVIEW OF LITERATURE

3.1 Importance of disease forecasting

3.1.1 Requisites for an effective forecasting of communicable diseases
3.1.2 Early Warning System (EWS)

3.2 Epidemiological models for disease forecasting

3.3 Modeling on anthrax

3.3.1 Ecological niche modeling with the Genetic Algorithm for Rule-set Production
3.3.2 Multiple logistic regression model
3.3.3 Clinician Detection model
3.3.4 Modeling response to anthrax infection
3.3.5 A mathematical simulation of the inflammatory response to anthrax infection
3.3.6 Dose-Response Model
3.3.7 Modeling of Inhalational anthrax
3.3.8 Modeling for impact of distributing MedKits
3.3.9 Modeling the host response to inhalation anthrax

3.4 Modeling on other animal diseases

3.4.1 Mathematical Modeling and rank analysis
3.4.2 Combination of statistical models
3.4.3 Mathematical models for controlling equine influenza

3.5 Modeling on human diseases

3.5.1 Multiple Linear Regression and remote sensing
3.5.2 Multi Step Polynomial Regression
3.5.3 Principal component regression
3.5.4 Time series analysis
3.5.5 Comparison of time series models with Exponential Smoothing Method and the Box Jenkins Method
3.5.6 SARIMA model for dengue in Rajasthan
3.5.7 Dengue – Negative Binomial model
3.5.8 Boosted regression tree (BRT) model for Dengue fever
3.5.9 Seasonal autoregressive model for dengue in Mexico
3.5.10 Artificial neural network
3.5.11 SARIMA for Hand, Foot and Mouth disease
3.5.12 Decision tree algorithm and Naive bayes classifier: A comparison in the case of Swine flu.
3.5.13 SARIMA model for incidence of tuberculosis (TB) in Iran
3.5.14 SARIMA model and a generalized regression neural network model for tuberculosis
3.5.15 Autoregressive integrated moving average model (ARIMA) - Back propagation neural network (BPNN)
3.5.16 Comparison of negative binomial models with seasonal model
3.5.17 Zero inflated model
3.5.18 Multiple logistic regression for modeling diabetes
3.5.19 Modeling Diabetes Disease Diagnosis Using Multivariate Adaptive Regression Splines
3.5.20 Artificial neural network (ANN) for thyroid disease
3.5.21 Support Vector Machine (SVM) and Artificial Neural Network (ANN): A comparison in the case of heart disease
3.5.22 Heart Disease Prediction Model Using Classification Algorithms
3.5.23 Brain Tumor detection and classification using Adaptive boosting
3.5.24 Lymph Diseases Prediction Using Random Forest and Particle Swarm Optimization
3.6 Modeling on plant diseases
3.6.1 Models by Indian Agricultural Statistics Research Institute (IASRI)
3.6.2 Support vector machines (SVM)
3.7 Species distribution model validation

4 CHAPTER 4 MATERIALS AND METHODS
4.1 Aims and objectives
4.1.1 General objective
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.2</td>
<td>Specific objectives</td>
</tr>
<tr>
<td>4.2</td>
<td>Research lacunae</td>
</tr>
<tr>
<td>4.3</td>
<td>The present study</td>
</tr>
<tr>
<td>4.4</td>
<td>Materials and methods</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Area of interest</td>
</tr>
<tr>
<td>4.4.1.1</td>
<td>Study Area</td>
</tr>
<tr>
<td>4.4.1.2</td>
<td>Climate and Rainfall</td>
</tr>
<tr>
<td>4.4.1.3</td>
<td>Temperature</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The methodology</td>
</tr>
<tr>
<td>4.4.2.1</td>
<td>Data collection</td>
</tr>
<tr>
<td>4.4.2.2</td>
<td>Disease database</td>
</tr>
<tr>
<td>4.4.2.3</td>
<td>Identification of risk factors and generation of data base</td>
</tr>
<tr>
<td>4.4.3</td>
<td>The risk factors</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Risk factors for Anthrax disease outbreak</td>
</tr>
<tr>
<td>4.4.4.1</td>
<td>Remote sensing and GIS</td>
</tr>
<tr>
<td>4.4.4.1.1</td>
<td>LST</td>
</tr>
<tr>
<td>4.4.4.1.2</td>
<td>NDVI</td>
</tr>
<tr>
<td>4.4.4.2</td>
<td>Climatic variables</td>
</tr>
<tr>
<td>4.4.4.2.1</td>
<td>Temperature and Relative Humidity</td>
</tr>
<tr>
<td>4.4.4.2.2</td>
<td>Rainfall</td>
</tr>
<tr>
<td>4.4.4.2.3</td>
<td>Excessive Rainfall</td>
</tr>
<tr>
<td>4.4.4.3</td>
<td>Soil profile</td>
</tr>
<tr>
<td>4.4.4.3.1</td>
<td>Soil pH</td>
</tr>
<tr>
<td>4.4.4.3.2</td>
<td>Type of soil</td>
</tr>
<tr>
<td>4.4.4.3.3</td>
<td>Soil nutrients</td>
</tr>
<tr>
<td>4.4.4.4</td>
<td>Anthropogenic variables</td>
</tr>
<tr>
<td>4.4.4.5</td>
<td>Presence of forest</td>
</tr>
<tr>
<td>4.4.4.6</td>
<td>Elevation</td>
</tr>
<tr>
<td>4.4.4.7</td>
<td>Sunshine hours</td>
</tr>
<tr>
<td>4.4.4.8</td>
<td>Livestock population</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Glimpse of the database</td>
</tr>
<tr>
<td>4.4.6</td>
<td>Units of measurement of risk factors</td>
</tr>
<tr>
<td>4.4.7</td>
<td>Categories of categorical variables</td>
</tr>
<tr>
<td>4.4.8</td>
<td>Understanding the disease pattern</td>
</tr>
</tbody>
</table>
4.4.8.1 District wise distribution of anthrax 55
4.4.8.2 Taluk wise distribution of anthrax 56
4.4.8.3 Year wise distribution of anthrax 56
4.4.8.4 Month wise distribution of anthrax 56
4.4.8.5 Soil wise distribution of anthrax 56
4.4.8.6 Agro climatic zone wise distribution of anthrax 56
4.4.9 Association between number of anthrax outbreaks and risk factors 57
4.4.10 Research questions 57
4.4.11 Research Hypothesis 58
4.5 Statistical prediction models 59
4.5.1 Fitting the model for disease-presence only data 60
4.5.1.1 Poisson model 63
4.5.1.2 Truncated Poisson model 64
4.5.1.3 Negative Binomial model 65
4.5.1.4 Truncated Negative Binomial model 65
4.5.1.5 Evaluation of Models 66
4.5.1.5.1 Goodness of Fit Statistic 66
4.5.1.5.2 AIC 67
4.5.1.5.3 AICC 67
4.5.1.5.4 BIC 68
4.5.1.6 Assessing overfitting – measuring true prediction error of the model 68
4.5.1.7 Evaluation of parameter estimates 68
4.5.1.7.1 Wald 95% Confidence Limits 68
4.5.1.7.2 Wald Chi Square statistic for testing individual coefficients 69
4.5.1.7.3 t statistic for testing individual coefficients 69
4.5.1.7.4 z statistic for testing individual coefficients 69
4.5.1.8 Discriminant analysis 70
4.5.2 Species Distribution Modelling (SDM) 70
4.5.2.1 Regression models 73
4.5.2.1.1 Generalized Linear Models (GLM) 73
4.5.2.1.2 Generalized Additive Models 74
4.5.2.2 Machine learning methods 75
4.5.2.2.1 Random Forest 75
4.5.2.2.2 Boosted Regression Trees (BRT) or Gradient Boosting Machine (GBM) 76
4.5.2.2.3 Artificial Neural Network (ANN) 77
4.5.2.2.4 Multiple Adaptive Regression Splines (MARS) 78
4.5.2.2.5 Flexible Discriminant Analysis (FDA) 79
4.5.2.2.6 Classification Tree Analysis 79
4.5.2.2.7 Support Vector Machine (SVM) 80
4.5.2.2.8 Naïve Bayes 81
4.5.2.2.9 Adaptive Boosting (ADA) 81
4.5.2.2.10 Maxent 82
4.5.2.3 Model evaluation methods: 83
4.5.2.3.1 Receiver Operating Characteristic (ROC) 83
4.5.2.3.2 Cohen's Kappa (Heidke skill score) 84
4.5.2.3.3 True Skill Statistic (TSS) 85
4.5.2.4 Combining predictions of models 85
4.5.2.5 Temporal autocorrelation 85
4.5.2.6 Spatial autocorrelation 86
4.5.2.7 Kurtosis 86
4.6 Software used 86
4.6.1 SAS 86
4.6.2 SPSS 87
4.6.3 ArcGIS and ArcMap 87
4.6.4 Software R 87

5 CHAPTER 5 RESULTS 89
5.1 Understanding the anthrax outbreak data 89
5.1.1 Distribution of anthrax outbreaks - District wise 89
5.1.2 Distribution of anthrax outbreaks – Taluk wise 92
5.1.3 Distribution of anthrax outbreaks - Month wise 98
5.1.4 Distribution of anthrax outbreaks - Year wise 99
5.1.5 Comparison of outbreaks between two time periods 101
5.1.5.1 Comparison of anthrax outbreaks in districts of Karnataka 101
5.1.5.2 Comparison of anthrax outbreaks in taluks of Karnataka 103
5.1.5.3 Comparison of anthrax outbreaks – month wise 106
5.1.6 Distribution of anthrax outbreaks in relation to soil types 106
5.1.7 Distribution of anthrax outbreaks in relation to Agro Climatic Zones 108
5.2 Measure of association between number of anthrax outbreaks and risk factors