# PREPARATION AND CHARACTERIZATION OF SOME NANOCRYSTALLINE SEMICONDUCTOR THIN FILMS FOR PEC SPLITTING OF WATER

## CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Pg. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1. INTRODUCTION</strong></td>
<td>1-53</td>
</tr>
<tr>
<td>1.1 Solar spectrum ...........................................................................................................................................</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Methods of hydrogen production ................................................. ........................................................................</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Photoelectrochemical cell for hydrogen generation ...............................................................................</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1 Electronic properties of semiconductors ......................................................... ...........................................</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2 Sub-bandgap energy states ........................................................................</td>
<td>19</td>
</tr>
<tr>
<td>1.3.3 Properties of electrolyte ........................................................................</td>
<td>20</td>
</tr>
<tr>
<td>1.3.4 Photoelectrolysis of water in a PEC cell .........................................................................................</td>
<td>21</td>
</tr>
<tr>
<td>1.3.5 Semiconductor/electrolyte interface ................................................. ........................................................................</td>
<td>24</td>
</tr>
<tr>
<td>1.3.6 Flatband potential ........................................................................</td>
<td>27</td>
</tr>
<tr>
<td>1.3.7 Choice of semiconductor in PEC splitting of water ...............................................................................</td>
<td>30</td>
</tr>
<tr>
<td>1.4 Nanostructured materials ........................................................................</td>
<td>35</td>
</tr>
<tr>
<td>1.5 Hematite (α-Fe₂O₃) ........................................................................</td>
<td>40</td>
</tr>
<tr>
<td>1.6 Present study and objectives ........................................................................</td>
<td>47</td>
</tr>
<tr>
<td><strong>2. LITERATURE REVIEW</strong></td>
<td>54-97</td>
</tr>
<tr>
<td>2.1 Review of some important reports on preparation, characterization and application of some metal oxide semiconductors in photoelectrochemical cell for energy conversion .........................................................................</td>
<td>54</td>
</tr>
<tr>
<td>2.1.1 Iron oxide ...............................................................................</td>
<td>54</td>
</tr>
<tr>
<td>2.1.2 Titanium dioxide ...............................................................................</td>
<td>75</td>
</tr>
</tbody>
</table>
3. EXPERIMENTS WITH $\alpha$-Fe$_2$O$_3$

3.1 Preparation of nanostructured thin films/pellets of $\alpha$-Fe$_2$O$_3$

3.1.1 Spray pyrolysis technique for preparation of nanostructured thin films of $\alpha$-Fe$_2$O$_3$

3.1.1.1 Preparation conditions

3.1.1.2 Optimization of preparation condition

3.1.1.3 Spray pyrolytic decomposition of iron nitrate

3.1.2 Sol-gel synthesis of nanostructured $\alpha$-Fe$_2$O$_3$ thin films

3.1.2.1 2-Methoxyethanol route

3.1.2.2 Preparation of thin films by spin coating

3.1.3 Synthesis of iron oxide pellets by glycerol route

Chemistry of glycerol method

3.1.4 Synthesis of iron oxide pellets by HMTA route

Chemistry of HMTA method

3.1.5 Preparation of pellets

3.2 Surface modification of $\alpha$-Fe$_2$O$_3$ thin films by depositing Cu and Zn dots

3.3 Characterization of $\alpha$-Fe$_2$O$_3$ thin films/pellets

3.3.1 Adhesiveness of thin films with substrate

3.3.2 Film thickness

3.3.3 Phase formation - X-ray diffraction analysis

3.3.4 Average particle/grain size

3.3.5 Surface morphology

3.3.5.1 Scanning electron microscopy

3.3.5.2 Atomic force microscopy

3.3.6 Absorption spectrophotometry

3.3.7 Bandgap

3.4 Studies on possible application of synthesized $\alpha$-Fe$_2$O$_3$ in PEC splitting of water

3.4.1 Electrode preparation

3.4.2 Photoelectrochemical studies

Photocurrent density

Resistivity

Nature of charge carrier

$V_{on}$ potential

3.4.3 Studies on corrosion vis-à-vis stability of thin films/pellets in PEC cell
3.5 Mott-Schottky plots

4. EXPERIMENTS WITH TiO₂

4.1. Preparation of nanostructured thin films of TiO₂

4.2. Preparation of WO₃ thin films

4.3. Preparation of WO₃/TiO₂ thin films

4.4. Characterization of samples

4.5. Studies on possible application of synthesized TiO₂, WO₃ and WO₃/TiO₂ in PEC splitting of water

Photocurrent density
Resistivity
Nature of charge carrier
V_on potential
Studies on corrosion vis-à-vis stability of samples in PEC cell
Mott-Schottky plots

5. DISCUSSION & CONCLUSION

5.1. A resume of results and important observations

5.1.1 Iron oxide films

5.1.1.1 Samples prepared by spray pyrolysis

5.1.1.2 Samples prepared by sol-gel process

5.1.2 Iron oxide powder/pellets

5.1.2.1 Samples prepared by glycerol route

5.1.2.2 Samples prepared by HMTA route

5.1.3 Surface modified iron oxide films

5.1.4 TiO₂, WO₃ and WO₃/TiO₂ films

5.2. Discussion

Iron oxide (α-Fe₂O₃)

5.2.1 Characterization of iron oxide thin films and powder/pellets

5.2.2 Photoelectrochemical studies with iron oxide thin films/pellets

5.2.3 Characterization of surface modified iron oxide thin films

5.2.4 Photoelectrochemical studies with surface modified iron oxide films

Titanium dioxide (TiO₂)

5.2.5 Characterization of TiO₂, WO₃ and WO₃/TiO₂ films

5.2.6 Photoelectrochemical studies with TiO₂, WO₃ and WO₃/TiO₂ films

5.3. Conclusion & some futuristic thoughts