LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical structure of (a) chitin and (b) chitosan.</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Structural image of graphene.</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical structures of some conducting polymers.</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemical structure of polyaniline (Three oxidation states).</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Electronic conduction path of the polyaniline (a) conductive granular region encapsulated in the insulating region and (b) inter-nanotubular contact.</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Formation of aniline radical cation and its different form of resonance structure.</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Formation of the dimer and its corresponding radical cation.</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>One possible way of polyaniline polymer formation.</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Preparation process of CS-SnO$_2$ composite.</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Preparation process of CS-SnO$_2$-PANI hybrid composite.</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Preparation process of G-SnO$_2$ composite.</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>Preparation process of G-SnO$_2$-PANI hybrid composite.</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Preparation process of CS-SnZnO hybrid composite.</td>
<td>54</td>
</tr>
<tr>
<td>5.1</td>
<td>FTIR spectra of (a) PANI, (b) SnO$_2$, (c) CS-SnO$_2$, (d) CS-PANI and (e) CS-SnO$_2$-PANI.</td>
<td>60</td>
</tr>
<tr>
<td>5.2</td>
<td>FTIR spectra of (a) Graphene, (b) PANI, (c) G-SnO$_2$, (d) G-PANI and (e) G-SnO$_2$-PANI.</td>
<td>64</td>
</tr>
</tbody>
</table>
5.3 XRD patterns of (a) PANI, (b) SnO$_2$, (c) CS-SnO$_2$, (d) CS-PANI and (e) CS-SnO$_2$-PANI.

5.4 XRD patterns of (a) Graphene, (b) PANI, (c) G-SnO$_2$, (d) G-PANI and (e) G-SnO$_2$-PANI.

5.5 UV-Vis spectra of (a) PANI, (b) CS-PANI and (c) CS-SnO$_2$-PANI.

5.6 UV-Vis spectra of (a) PANI, (b) G-PANI and (c) G-SnO$_2$-PANI.

5.7 HR-SEM images of (a) PANI, (b) SnO$_2$, (c) CS-SnO$_2$, (d) CS-PANI and (e) CS-SnO$_2$-PANI.

5.8 HR-SEM images of (a) Graphene, (b) PANI, (c) G-SnO$_2$, (d) G-PANI and (e) G-SnO$_2$-PANI.

5.9 EDAX spectra of (a) PANI, (b) SnO$_2$, (c) CS-SnO$_2$, (d) CS-PANI and (e) CS-SnO$_2$-PANI.

5.10 EDAX spectra of (a) Graphene, (b) PANI, (c) G-SnO$_2$, (d) G-PANI and (e) G-SnO$_2$-PANI.

5.11 TEM images of (a) PANI, (b) SnO$_2$, (c) CS-SnO$_2$, (d) CS-PANI, (e) CS-SnO$_2$-PANI and (f) SAED pattern of CS-SnO$_2$-PANI.

5.12 TEM images of (a) Graphene, (b) PANI, (c) G-SnO$_2$, (d) G-PANI, (e) G-SnO$_2$-PANI and (f) SAED pattern of G-SnO$_2$-PANI.

5.13 BET analysis of (a) PANI, (b) SnO$_2$, (c) CS-SnO$_2$, (d) CS-PANI and (e) CS-SnO$_2$-PANI.

5.14 BET analysis of (a) Graphene, (b) PANI, (c) G-SnO$_2$, (d) G-PANI and (e) G-SnO$_2$-PANI.
5.15 TG analysis of (a) PANI, (b) SnO₂, (c) CS-SnO₂, (d) CS-PANI and (e) CS-SnO₂-PANI and inset: Chitosan. 91

5.16 TG analysis of (a) Graphene, (b) PANI, (c) G-SnO₂, (d) G-PANI and (e) G-SnO₂-PANI. 93

5.17 DTA curves of (a) PANI, (b) SnO₂, (c) CS-SnO₂, (d) CS-PANI and (e) CS-SnO₂-PANI. 96

5.18 DTA curves of (a) Graphene, (b) PANI, (c) G-SnO₂, (d) G-PANI and (e) G-SnO₂-PANI. 98

5.19 Absorption spectrum of methylene blue dye (Inset: The dye calibration of linear regression). 100

5.20 Chemical structure of methylene blue dye. 100

5.21 Absorption spectrum of reactive yellow dye (Inset: The dye calibration of linear regression). 101

5.22 Chemical structure of reactive yellow dye. 102

5.23 Absorption spectral patterns of (a) MB dye and (b) MB dye in presence of CS-SnO₂-PANI photocatalyst during the degradation process under direct sunlight. 103

5.24 Absorption spectral patterns of (a) RY dye and (b) RY dye in presence of CS-SnO₂-PANI photocatalyst during the degradation process under direct sunlight. 105

5.25 Photocatalytic degradation of hybrid composites (a) MB, (b) RY dye and (c) % degradation of MB and RY dye. 106
5.26 Mechanism of photocatalytic reaction.

5.27 Schematic representation of photodegradation of MB and RY dye using photocatalyst.

5.28 Absorption spectral patterns of (a) MB dye and (b) MB dye in presence of G-SnO$_2$-PANI photocatalyst during the degradation process under direct sunlight.

5.29 Absorption spectral patterns of (a) RY dye and (b) RY dye in presence of G-SnO$_2$-PANI photocatalyst during the degradation process under direct sunlight.

5.30 Photocatalytic degradation of hybrid composites (a) MB, (b) RY dye and (c) % degradation of MB and RY dye.

5.31 Schematic representation of photodegradation of MB an RY dye using photocatalyst.

5.32 Cyclic voltammograms of (a) CS-PANI and (b) CS-SnO$_2$-PANI electrodes in 1M H$_2$SO$_4$ at scan rate of 50 mVs^{-1} (Inset: PANI).

5.33 CV curves of CS-SnO$_2$-PANI electrode at different scan rate from 10-100 mVs^{-1} in 1M H$_2$SO$_4$.

5.34 (A) Charge/discharge curves of (a) CS-PANI and (b) CS-SnO$_2$-PANI electrodes at 0.1 Ag$^{-1}$ and (B) CS-SnO$_2$-PANI electrodes at different current densities (0.1, 0.5 and 1.0 Ag$^{-1}$).

5.35 Specific capacitance curves of (a) CS-PANI and (b) CS-SnO$_2$-PANI electrode at 0.1, 0.5 and 1.0 Ag$^{-1}$ current densities.
Charge/discharge cycling performance of (a) CS-PANI and (b) CS-SnO$_2$-PANI electrode materials within the potential window of 0 to 0.8 V at a current density of 0.5 A g$^{-1}$.

Charge/discharge cycling performance of 1000 cycle for CS-SnO$_2$-PANI electrode materials within the potential window of 0 to 0.8 V at a current density of 0.5 A g$^{-1}$.

Impedance spectra of (a) PANI, (b) CS-PANI and (c) CS-SnO$_2$-PANI electrodes in 1M H$_2$SO$_4$ electrolyte under potential amplitude of 5 mV s$^{-1}$ and frequency range of 10^5 to 0.01 Hz.

Cyclic voltammograms of (a) G-PANI and (b) G-SnO$_2$-PANI electrodes in 1M H$_2$SO$_4$ at scan rate of 50 mV s$^{-1}$.

CV curves of G-SnO$_2$-PANI electrode at different scan rate from 10-100 mV s$^{-1}$ in 1M H$_2$SO$_4$.

(A) Charge/discharge curves of (a) G-PANI and (b) G-SnO$_2$-PANI electrodes at 0.1 A g$^{-1}$ and (B) G-SnO$_2$-PANI electrodes at various current densities (0.1, 0.5 and 1.0 A g$^{-1}$).

Specific capacitance curves of (a) G-PANI and (b) G-SnO$_2$-PANI electrode at 0.1, 0.5 and 1.0 A g$^{-1}$ current densities.

Charge/discharge cycling performance of (a) G-PANI and (b) G-SnO$_2$-PANI electrode within the potential window of 0 to 0.8 V at a current density of 0.5 A g$^{-1}$.

Charge/discharge cycling performance of 1000 cycle for G-SnO$_2$-PANI electrode materials within the potential window of
0 to 0.8 V at a current density of 0.5 Ag⁻¹.

5.45 Impedance spectra of (a) PANI, (b) G-PANI and (c) G-SnO₂-PANI electrodes in 1M H₂SO₄ electrolyte under potential amplitude 5 mVs⁻¹ and frequency range of 10² to 0.01 Hz.

5.46 Photocatalytic degradation of hybrid composites (a) MB, (b) RY dye and (c) % degradation of MB and RY dye.

5.47 (A) Charge/discharge curves at 0.1 Ag⁻¹ (B) Specific capacitance curves at 0.1, 0.5 and 1.0 Ag⁻¹ current densities and (C) Charge/discharge cycling performance of (a) CS-SnO₂-PANI and (b) G-SnO₂-PANI electrode at a current density of 0.5 Ag⁻¹.

6.1 FTIR spectra of (a) CS, (b) SnO₂, (c) ZnO, (d) CS-SnO₂ and (e) CS-SnZnO.

6.2 XRD patterns of (a) SnO₂, (b) ZnO, (c) CS-SnO₂ and (d) CS-SnZnO.

6.3 UV-Vis DRS spectra of (a) SnO₂, (b) ZnO, (c) CS-SnO₂ and (d) CS-SnZnO.

6.4 HR-SEM images of (a) SnO₂, (b) ZnO, (c) CS-SnO₂ and (d) CS-SnZnO.

6.5 EDAX images of (a) SnO₂, (b) ZnO, (c) CS-SnO₂ and (d) CS-SnZnO.

6.6 TEM images of (a) SnO₂, (b) ZnO, (c) CS-SnO₂ and (d) CS-SnZnO.
6.7 BET analysis of (a) SnO$_2$, (b) ZnO, (c) CS-SnO$_2$ and
(d) CS-SnZnO.

6.8 TG analysis of (a) SnO$_2$, (b) ZnO, (c) CS-SnO$_2$ and
(d) CS-SnZnO.

6.9 DTA curves of (a) SnO$_2$, (b) ZnO, (c) CS-SnO$_2$ and
(d) CS-SnZnO.

6.10 Absorption spectral patterns of (a) MB dye and (b) MB dye in
presence of CS-SnZnO photocatalyst during the degradation
process under direct sunlight.

6.11 Absorption spectral patterns of (a) RY dye and (b) RY dye in
presence of CS-SnZnO photocatalyst during the degradation
process under direct sunlight.

6.12 Photocatalytic degradation of hybrid composites (a) MB, (b) RY
dye and (c) % degradation of MB and RY dye.

6.13 Schematic representation of photodegradation of MB and RY dye
using photocatalyst.