Chapter 6

Generalized Statistical Convergence in Random 2-Normed Space

Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive real numbers tending to ∞ with $\lambda_{n+1} \leq \lambda_n + 1, \lambda_1 = 1$. In the present chapter, we introduce the notion of Λ statistical convergence of order α , Λ - statistical Cauchy sequences of order α in random 2-normed spaces and obtain some results. We display examples which shows our method of convergence is more general in random 2-normed space.

6.1 $S_{\Lambda}^{R2N}(\alpha)$ – Convergence

In this section, we begin with the following definition of statistical and Λ - statistical convergence of order α in random 2-normed spaces. Before we start, it would be convenient to recall the DEFINITION of μ -convergent sequences due to Mursaleen

Results presented in this chapter are accepted in Miskolc Mathematical Notes, Hungary.

and Noman (166).

Let $\mu = (\mu_k)$ be a sequence of positive real numbers tending to infinity such that

$$0 < \mu_0 < \mu_1 < \mu_2 \dots$$
 and $\mu_k \to \infty$ as $k \to \infty$.

Then, a sequence $x = (x_k)$ of numbers is said to be μ -convergent to a number l if $\Lambda x_k \to l \text{ as } k \to \infty$, where

$$\Lambda x_{k} = \frac{1}{\mu_{k}} \sum_{i=0}^{k} (\mu_{i} - \mu_{i-1}) x_{i}$$

DEFINITION 6.1.1 A sequence $x = (x_k)$ in a random 2-normed space $(X, \mathcal{F}, *)$ is said to be statistically convergent of order α $(0 < \alpha \leq 1)$ to $x_0 \in X$ provided that, for every $\epsilon > 0, t \in (0, 1)$ and $\theta \neq z \in X$,

$$\lim_{n \to \infty} \frac{1}{n^{\alpha}} \left| \left\{ k \in \mathbb{N} : \mathcal{F}(\Lambda x_k - x_0, z; \epsilon) \le 1 - t \right\} \right| = 0,$$

or equivalently

$$\lim_{n \to \infty} \frac{1}{n^{\alpha}} \left| \left\{ k \in \mathbb{N} : \mathcal{F}(\Lambda x_k - x_0, z; \epsilon) > 1 - t \right\} \right| = 1.$$

In this case, we write $S^{R2N}(\alpha) - \lim_{k \to \infty} x_k = x_0$.

Let, $S^{R2N}(\alpha)$ denotes the set of all statistically convergent sequences of order α in a random 2-normed space $(X, \mathcal{F}, *)$.

DEFINITION 6.1.2 Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive real numbers tending to ∞ with $\lambda_{n+1} \leq \lambda_n + 1, \lambda_1 = 1$. A sequence $x = (x_k)$ in a random 2-normed space $(X, \mathcal{F}, *)$ is said to be Λ - statistically convergent of order α $(0 < \alpha \leq 1)$ to $x_0 \in X$ provided that, for every $\epsilon > 0, t \in (0, 1)$ and $\theta \neq z \in X$,

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |k \in I_n : \mathcal{F}(\Lambda x_k - x_0, z; \epsilon) \le 1 - t\}| = 0,$$

or equivalently

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |k \in I_n : \mathcal{F}(\Lambda x_k - x_0, z; \epsilon) > 1 - t\}| = 1,$$

where λ_n^{α} denote the α th power of λ_n , i.e., $(\lambda_n^{\alpha}) = (\lambda_1^{\alpha}, \lambda_2^{\alpha}, \lambda_3^{\alpha}, \cdots)$. In this case, we write $S_{\Lambda}^{R2N}(\alpha) - \lim_{k \to \infty} x_k = x_0$.

Let, $S_{\Lambda}^{R2N}(\alpha)$ denotes the set of all Λ - statistically convergent sequences of order α in a random 2-normed space $(X, \mathcal{F}, *)$.

For the particular choice $\alpha = 1$, DEFINITION 6.1.2 coincides with the notion of Λ statistical convergence of (3); For $\lambda_n = n$, DEFINITION 6.1.2 coincides with the
notion of statistical convergence of order α in random 2-normed space; For $\lambda_n = n$ and $\alpha = 1$, DEFINITION 6.1.2 coincides with the notion of statistical convergence
in random 2-normed space (163).

We next give EXAMPLE that shows DEFINITION 6.1.2 is well defined for $(0 < \alpha \le 1)$ but not for $\alpha > 1$. In view of this we need the following theorem with LEMMA.

LEMMA 6.1.1 Let $\lambda = (\lambda_n)$ be a non-decreasing sequence as defined above and $(X, \mathcal{F}, *)$ be a random 2-normed space. Let $0 < \alpha \leq 1$ and $x = (x_k)$ be a sequence in X. Then, for $\epsilon > 0$, $t \in (0, 1)$ and $\theta \neq z \in X$, the following statements are equivalent:

- (i) $S_{\Lambda}^{R2N}(\alpha) \lim_{k \to \infty} x_k = x_0,$
- (*ii*) $\lim_{n\to\infty} \frac{1}{\lambda_n^{\alpha}} |k \in I_n : \mathcal{F}(\Lambda x_k x_0, z; \epsilon) \le 1 t\}| = 0,$
- (*iii*) $\lim_{n\to\infty} \frac{1}{\lambda_n^{\alpha}} |k \in I_n : \mathcal{F}(\Lambda x_k x_0, z; \epsilon) > 1 t\}| = 1,$
- (iv) $S^{R2N}_{\Lambda}(\alpha) \lim_{k \to \infty} \mathcal{F}(\Lambda x_k x_0, z; \epsilon) = 1.$

THEOREM 6.1.1 Let $(X, \mathcal{F}, *)$ be a random 2-normed space and $0 < \alpha \leq 1$ be

given. If $S^{R2N}_{\Lambda}(\alpha) - \lim_{k \to \infty} x_k = x_0$, then x_0 must be unique.

Proof Suppose $S_{\Lambda}^{R2N}(\alpha) - \lim_{k \to \infty} x_k = y_0$ where $y_0 \neq x_0$. Given $\epsilon > 0$ and t > 0, choose $\eta > 0$ such that $(1 - \eta) * (1 - \eta) > 1 - \epsilon$. For $\theta \neq z \in X$, define

$$K_1(\eta, t) = \left\{ k \in I_n : \mathcal{F}\left(\Lambda x_k - x_0, z; \frac{t}{2}\right) \le 1 - \eta \right\};$$

$$K_2(\eta, t) = \left\{ k \in I_n : \mathcal{F}\left(\Lambda x_k - y_0, z; \frac{t}{2}\right) \le 1 - \eta \right\}.$$

Since $S_{\Lambda}^{R2N}(\alpha) - \lim_{k \to \infty} x_k = x_0$ and $S_{\Lambda}^{R2N}(\alpha) - \lim_{k \to \infty} x_k = y_0$, it follows for every t > 0,

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |K_1(\eta, t)| = 0 \quad \text{and} \quad \lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |K_2(\eta, t)| = 0$$

Let $K(\eta, t) = K_1(\eta, t) \cup K_2(\eta, t)$, then clearly $\lim_{n\to\infty} \frac{1}{\lambda_n^{\alpha}} |K(\eta, t)| = 0$ which immediately implies $\lim_{n\to\infty} \frac{1}{\lambda_n^{\alpha}} |K^c(\eta, t)| = 1$. Let $k \in K^c(\eta, t) = K_1^c(\eta, t) \cap K_2^c(\eta, t)$. Now one can write,

$$\mathcal{F}\left(x_0 - y_0, z; \frac{t}{2}\right) \ge \mathcal{F}\left(\Lambda x_k - x_0, z; \frac{t}{2}\right) * \mathcal{F}\left(\Lambda x_k - y_0, z; \frac{t}{2}\right) > (1 - \eta) * (1 - \eta) > 1 - \epsilon.$$

Since ϵ is arbitrary, it follows that $\mathcal{F}(x_0 - y_0, z; \frac{t}{2}) = 1$, for t > 0 and $\theta \neq z \in X$. This shows that $x_0 = y_0$.

EXAMPLE 6.1.1 Let $X = \mathbb{R}^2$ with the 2- norm $||x, z|| = ||x_1z_2 - x_2z_1||$ where $x = (x_1, x_2), z = (z_1, z_2)$ and a * b = ab for all $a, b \in [0, 1]$. Let $\mathcal{F}(x, z; t) = \frac{t}{t+||x, z||}$ where $x \in X, t \in (0, 1)$ and $\theta \neq z \in X$. Then $(\mathbb{R}^2, \mathcal{F}, *)$ is a random 2-normed space. We define a sequence $x = (x_k)$ as follows:

$$\Lambda x_k = \begin{cases} (1,0), & \text{if } k \text{ is even,} \\ (0,0), & \text{if } k \text{ is odd.} \end{cases}$$

For $\epsilon > 0, t \in (0, 1)$, if we define

$$K(\epsilon, t) = \left\{ k \in I_n : \mathcal{F} \left(\Lambda x_k - \theta, z; t \right) \le 1 - \epsilon \right\}, \theta = (0, 0)$$
$$= \left\{ k \in I_n : \frac{t}{t + ||\Lambda x_k - \theta, z||} \le 1 - \epsilon \right\}$$
$$= \left\{ k \in I_n : ||\Lambda x_k - \theta, z|| \ge \frac{\epsilon t}{1 - \epsilon} > 0 \right\}$$
$$= \left\{ k \in I_n : \Lambda x_k = (1, 0) \right\}$$
$$= \left\{ k \in I_n : k \text{ is even} \right\};$$

then,

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |K(\epsilon, t)| = \lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |\{k \in I_n : k \text{ is even}\}| \le \lim_{n \to \infty} \frac{[\sqrt{\lambda_n}] + 1}{2\lambda_n^{\alpha}} = 0$$

for $\alpha > 1$.

Similarly, for $\epsilon > 0$ and $t \in (0, 1)$ if we define

$$B(\epsilon, t) = \{k \in I_n : \mathcal{F}(\Lambda x_k - x_0, z; t) \le 1 - \epsilon\}, x_0 = (1, 0)$$

then

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |B(\epsilon, t)| = \lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} \left| \left\{ k \in I_n : \mathbf{k} \text{ is odd } \right\} \right| \le \lim_{n \to \infty} \frac{\left[\sqrt{\lambda_n} \right] + 1}{2\lambda_n^{\alpha}} = 0$$

for $\alpha > 1$.

This shows that $S^{R2N}_{\Lambda}(\alpha) - \lim_k x_k$ is not unique and we obtain a contradiction to THEOREM 6.1.1.

The next THEOREM reveals the relation between ordinary convergence and Λ statistical convergence of order α in a random 2-normed space.

THEOREM 6.1.2 Let $(X, \mathcal{F}, *)$ be a random 2-normed space and $0 < \alpha \leq 1$ be given. For a sequence $x = (x_k)$ in X if $\mathcal{F}_{\Lambda} - \lim_k x_k = x_0$, then $S_{\Lambda}^{R2N}(\alpha) - \lim_k x_k = x_0$. However, the converse need not be true in general. **Proof** Since $\mathcal{F}_{\Lambda} - \lim_{k} x_{k} = x_{0}$, so for $\epsilon > 0, t \in (0, 1)$ and $\theta \neq z \in X$ there exists a positive integer n_{0} such that $\mathcal{F}(\Lambda x_{k} - x_{0}, z; t) > 1 - \epsilon$ for all $k \geq n_{0}$. Hence the set, $K(\epsilon, t) = \{k \in I_{n} : \mathcal{F}(\Lambda x_{k} - x_{0}, z; t) \leq 1 - \epsilon\} \subset \{1, 2, 3, \dots, n_{0} - 1\}$, for which we have

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} \left| \left\{ k \in I_n : \mathcal{F} \left(\Lambda x_k - x_0, z; t \right) \le 1 - \epsilon \right\} \right| = 0.$$

This shows that $S_{\Lambda}^{R2N}(\alpha) - \lim_{k \to \infty} x_k = x_0.$

We next give the following EXAMPLE which shows that the converse need not be true.

EXAMPLE 6.1.2 Consider the random 2-normed space as in EXAMPLE 6.1.1. Define a sequence $x = (x_k)$ as follows:

$$\Lambda x_k = \begin{cases} (k,0), & \text{if } n - [\sqrt{\lambda_n}] + 1 \le k \le n, \\ (0,0), & \text{otherwise.} \end{cases}$$

For $\epsilon > 0$ and t > 0 if we define $K(\epsilon, t) = \{k \in I_n : \mathcal{F}(\Lambda x_k, z; t) \le 1 - \epsilon\}$, then one can write as in EXAMPLE 6.1.1, $K(\epsilon, t) = \{k \in I_n : n - [\sqrt{\lambda_n}] + 1 \le k \le n\}$.

Thus,

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |K(\epsilon, t)| = \lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} \left| \left\{ k \in I_n : n - \left[\sqrt{\lambda_n} \right] + 1 \le k \le n \right\} \right|$$
$$\leq \lim_{n \to \infty} \frac{\left[\sqrt{\lambda_n} \right]}{\lambda_n^{\alpha}} = 0$$

for $\frac{1}{2} < \alpha \leq 1$. This shows that $S_{\Lambda}^{R2N}(\alpha) - \lim_k x_k = 0$. But $\mathcal{F}_{\Lambda} - \lim_k x_k \neq 0$, since

$$\mathcal{F}(\Lambda x_k, z; t) = \frac{t}{t + ||\Lambda x_k, z||} = \begin{cases} \frac{t}{t + kz_2}, & \text{if } n - [\sqrt{\lambda_n}] + 1 \le k \le n, \\ 1, & \text{otherwise.} \end{cases}$$

which implies

$$\lim_{k \to \infty} \mathcal{F}(\Lambda x_k, z; t) = \begin{cases} 0, & \text{if } n - [\sqrt{\lambda_n}] + 1 \le k \le n, \\ 1, & \text{otherwise.} \end{cases}$$

THEOREM 6.1.3 Let $(X, \mathcal{F}, *)$ be a random 2-normed space and $0 < \alpha \leq 1$ be given. Let $x = (x_k)$ and $y = (y_k)$ be two sequences in X.

- (i) If $S_{\Lambda}^{R2N}(\alpha) \lim_{k \to \infty} x_k = x_0$ and $0 \neq c \in \mathbb{R}$, then $S_{\Lambda}^{R2N}(\alpha) \lim_{k \to \infty} cx_k = cx_0$.
- (ii) If $S_{\Lambda}^{R2N}(\alpha) \lim_{k \to \infty} x_k = x_0$ and If $S_{\Lambda}^{R2N}(\alpha) \lim_{k \to \infty} y_k = y_0$, then $S_{\Lambda}^{R2N}(\alpha) \lim_{k \to \infty} (x_k + y_k) = x_0 + y_0$.

Proof The proof of the Theorem is not so hard so is omitted here. \blacksquare

THEOREM 6.1.4 Let $(X, \mathcal{F}, *)$ be a random 2-normed space and $0 < \alpha \leq \beta \leq 1$ be given. Then $S_{\Lambda}^{R2N}(\alpha) \subset S_{\Lambda}^{R2N}(\beta)$ and the inclusion is strict for some α and β such that $\alpha < \beta$.

Proof If $0 < \alpha \leq \beta \leq 1$, then for every $\epsilon > 0$, t > 0 and $\theta \neq z \in X$, we have

$$\frac{1}{\lambda_n^{\beta}} \left| \left\{ k \in I_n : \mathcal{F}\left(\Lambda x_k - l, z; t\right) \le 1 - \epsilon \right\} \right| \le \frac{1}{\lambda_n^{\alpha}} \left| \left\{ k \in I_n : \mathcal{F}\left(\Lambda x_k - l, z; t\right) \le 1 - \epsilon \right\} \right|;$$

which immediately implies the inclusion $S_{\Lambda}^{R2N}(\alpha) \subset S_{\Lambda}^{R2N}(\beta)$.

We next give an EXAMPLE that shows the inclusion in $S_{\Lambda}^{R2N}(\alpha) \subset S_{\Lambda}^{R2N}(\beta)$ is strict for some α and β with $\alpha < \beta$.

EXAMPLE 6.1.3 Let $(\mathbb{R}^2, \mathcal{F}, *)$ be a random 2-normed space as defined above. We define a sequence $x = (x_k)$ as follows:

$$\Lambda x_k = \begin{cases} (1,0), & \text{if } n - [\sqrt{\lambda_n}] + 1 \le k \le n, \\ (0,0), & \text{otherwise.} \end{cases}$$

Then one can easily see $S_{\Lambda}^{R2N}(\beta) - \lim_k x_k = 0$, *i.e.*, $x \in S_{\Lambda}^{R2N}(\beta)$ for $\frac{1}{2} < \beta \leq 1$ but $x \notin S_{\Lambda}^{R2N}(\alpha)$ for $0 < \alpha \leq \frac{1}{2}$. This shows that the inclusion in $S_{\Lambda}^{R2N}(\alpha) \subset S_{\Lambda}^{R2N}(\beta)$ is strict.

THEOREM 6.1.5 Let $(X, \mathcal{F}, *)$ be a random 2-normed space and $0 < \alpha \leq 1$ be given. If $x = (x_k)$ be a sequence in X, then $S_{\Lambda}^{R2N}(\alpha) - \lim_k x_k = x_0$ if and only if there exists a subset $K = \{k_m : k_1 < k_2 < \ldots\}$ of \mathbb{N} such that $\lim_{n\to\infty} \frac{1}{\lambda_n^{\alpha}} |K| = 1$ and $\mathcal{F}_{\Lambda} - \lim_k x_k = x_0$.

Proof First suppose that $S_{\Lambda}^{R2N}(\alpha) - \lim_{k} x_{k} = x_{0}$. For $t > 0, \theta \neq z \in X$ and $p \in \mathbb{N}$, if we define

$$K(p,t) = \left\{ k \in I_n : \mathcal{F}(\Lambda x_k - x_0, z; t) \le 1 - \frac{1}{p} \right\}$$
$$M(p,t) = \left\{ k \in I_n : \mathcal{F}(\Lambda x_k - x_0, z; t) > 1 - \frac{1}{p} \right\};$$

then,

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |K(p,t)| = 0.$$

Also, for p = 1, 2, 3, ...

$$M(1,t) \supset M(2,t) \supset \dots M(i,t) \supset M(i+1,t) \supset \dots$$
(6.1.1)

and

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |M(p,t)| = 1.$$
(6.1.2)

Now to prove the result in one way it is sufficient to prove that $\mathcal{F}_{\Lambda} - \lim_k x_k = x_0$ over M(p,t). Suppose x_k is not convergent to x_0 over M(p,t) with respect to the norm \mathcal{F}_{Λ} . Then, there exists some $\eta > 0$ such that

$$\{k \in \mathbb{N} : \mathcal{F}(\Lambda x_k - x_0, z; t) \le 1 - \eta\}$$

for infinitely many terms x_k . Let,

$$M(\eta, t) = \left\{ k \in I_n : \mathcal{F} \left(\Lambda x_k - x_0, z; t \right) > 1 - \eta \right\}.$$

and $\eta > \frac{1}{p}$ for $p = 1, 2, 3 \cdots$. This implies that $\lim_{n\to\infty} \frac{1}{\lambda_n^{\alpha}} |M(\eta, t)| = 0$. Also from (6.1.1), we have $K_1(p,t) \subset M(\eta,t)$ which gives that $\lim_{n\to\infty} \frac{1}{\lambda_n^{\alpha}} |M(p,t)| = 0$, this contradicts (6.1.2). Hence $\mathcal{F}_{\Lambda} - \lim_{k} x_k = x_0$. Conversely, suppose that there exists a subset $K = \{k_m : k_1 < k_2 < \ldots\}$ of \mathbb{N} such that $\lim_{n\to\infty} \frac{1}{\lambda_n^{\alpha}} |K| = 1$ and $\mathcal{F}_{\Lambda} - \lim_{k} x_k = x_0$. Then for every t > 0, $\epsilon > 0$ and $\theta \neq z \in X$ there exists a positive integer k_0 such that,

$$\{k \in I_n : \mathcal{F}(\Lambda x_k - x_0, z; t) > 1 - \epsilon\}$$

for all $k \geq k_0$. Since the set $\{k \in I_n : \mathcal{F}(\Lambda x_k - x_0, z; t) \leq 1 - \epsilon\}$ is contained in $\mathbb{N} - \{k_0 + 1, k_0 + 2, k_0 + 3, \cdots\}$ therefore,

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} \left| \left\{ k \in I_n : \mathcal{F} \left(\Lambda x_k - x_0, z; t \right) \le 1 - \epsilon \right\} \right| = 0.$$

Hence, $S_{\Lambda}^{R2N}(\alpha) - \lim_k x_k = x_0. \blacksquare$

DEFINITION 6.1.3 Let $(X, \mathcal{F}, *)$ be a random 2-normed space. A sequence $x = (x_k)$ is said to be Λ - statistically Cauchy of order α ($0 < \alpha \le 1$) if for every $\epsilon > 0$, $t \in (0, 1)$ and $\theta \ne z \in X$ there exists a positive integer k_0 such that for all $k, l \ge k_0$

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |k \in I_n : \mathcal{F}(\Lambda x_k - \Lambda x_l, z; \epsilon) \le 1 - t\}| = 0$$

or equivalently

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |k \in I_n : \mathcal{F}(\Lambda x_k - \Lambda x_l, z; \epsilon) > 1 - t\}| = 1.$$

THEOREM 6.1.6 Let $(X, \mathcal{F}, *)$ be a random 2-normed space and $0 < \alpha \leq 1$ be

given. Then a sequence $x = (x_k)$ is said to be Λ - statistically convergent of order α iff it is Λ - statistically Cauchy of order α .

Proof Let $x = (x_k)$ be a Λ - statistically convergent sequence of order α . Suppose that $S_{\Lambda}^{R2N}(\alpha) - \lim_k x_k = x_0$. Let $\epsilon > 0$. Choose r > 0 such that $(1-r)*(1-r) > 1-\epsilon$. If we define

$$K(r,t) = \left\{ k \in I_n : \mathcal{F}\left(\Lambda x_k - x_0, z; \frac{t}{2}\right) \le 1 - r \right\}, \text{then}$$
$$K^c(r,t) = \left\{ k \in I_n : \mathcal{F}\left(\Lambda x_k - x_0, z; \frac{t}{2}\right) > 1 - r \right\};$$

which gives by virtue of $S^{\alpha}_{\Lambda} - \lim_{k} x_{k} = x_{0}$,

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |K(r,t)| = 0 \quad \text{and} \quad \lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |K^c(r,t)| = 1.$$

Let $m \in K^{c}(r,t)$, then $\mathcal{F}\left(\Lambda x_{m} - x_{0}, z; \frac{t}{2}\right) > 1 - r$. If we take,

$$B(\epsilon, t) = \{k \in I_n : \mathcal{F}(\Lambda x_k - \Lambda x_m, z; t) \le 1 - \epsilon\}$$

then to prove the first part it is sufficient to prove that $B(\epsilon, t) \subset K(r, t)$. Let $k \in B(\epsilon, t)$, which gives $\mathcal{F}(\Lambda x_k - \Lambda x_m, z; t) \leq 1 - \epsilon$. Suppose $k \notin K(r, t)$, then $\mathcal{F}(\Lambda x_k - x_0, z; \frac{t}{2}) > 1 - r$. Now, we can observe that,

$$1 - \epsilon \ge \mathcal{F} \left(\Lambda x_k - \Lambda x_m, z; t \right) \ge \mathcal{F} \left(\Lambda x_k - x_0, z; \frac{t}{2} \right) * \mathcal{F} \left(\Lambda x_m - x_0, z; \frac{t}{2} \right)$$
$$\ge (1 - r) * (1 - r)$$
$$> 1 - \epsilon.$$

This contradiction clearly shows that $B(\epsilon, t) \subset K(r, t)$ and therefore one way of the THEOREM is proved.

Conversely, Suppose that $x = (x_k)$ is Λ - statistically Cauchy sequence of order α but not Λ - statistically convergent of order α with respect to \mathcal{F} . Then for every t > 0, $\epsilon > 0$ and $\theta \neq z \in X$ there exists a positive integer m such that

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} |K(\epsilon, t)| = 0 \text{ where } K(\epsilon, t) = \{k \in I_n : \mathcal{F}(\Lambda x_k - \Lambda x_m, z; t) \le 1 - \epsilon\}.$$

This implies that $\lim_{n\to\infty} \frac{1}{\lambda_n^{\alpha}} |K^c(\epsilon, t)| = 1$. Choose r > 0 such that $(1-r) * (1-r) > 1-\epsilon$. Let

$$B(r,t) = \left\{ k \in I_n : \mathcal{F}\left(\Lambda x_k - x_0, z; \frac{t}{2}\right) > 1 - r \right\}.$$

Let $m \in B(r, t)$, then $\mathcal{F}\left(\Lambda x_m - x_0, z; \frac{t}{2}\right) > 1 - r$. Since

$$\mathcal{F}(\Lambda x_k - \Lambda x_m, z; t) \ge \mathcal{F}\left(\Lambda x_k - x_0, z; \frac{t}{2}\right) * \mathcal{F}\left(\Lambda x_m - x_0, z; \frac{t}{2}\right)$$
$$> (1 - r) * (1 - r)$$
$$> 1 - \epsilon;$$

therefore,

$$\lim_{n \to \infty} \frac{1}{\lambda_n^{\alpha}} \left| \left\{ k \in I_n : \mathcal{F} \left(\Lambda x_k - \Lambda x_m, z; t \right) > 1 - \epsilon \right\} \right| = 0.$$

i.e. $\lim_{n\to\infty} \frac{1}{\lambda_n^{\alpha}} |K^c(\epsilon, t)| = 0$ which leads to a contradiction. Hence $x = (x_k)$ is Λ -statistically convergent of order α .

6.2 Conclusion

We have defined generalized statistical convergence of order α in Random 2-normed space which is more general than Λ - statistical convergence of order α in Random 2-normed space. The particular choices of α give different convergence methods that shows our method of convergence is more general. For the particular choice $\alpha = 1$, this generalized concept coincides with the notion of Λ - statistical convergence of (3); For $\lambda_n = n$, it coincides with the notion of statistical convergence of order α in random 2-normed space; For $\lambda_n = n$ and $\alpha = 1$, it coincides with the notion of statistical convergence in random 2-normed space.