Chapter 6

Generalized Statistical
Convergence in Random 2-Normed

Space

Let A = (\,) be a non-decreasing sequence of positive real numbers tending to oo
with A1 < A\, + 1,A\; = 1. In the present chapter, we introduce the notion of A—
statistical convergence of order «, A— statistical Cauchy sequences of order a in
random 2-normed spaces and obtain some results. We display examples which shows

our method of convergence is more general in random 2-normed space.

6.1 Si?"(a)— Convergence

In this section, we begin with the following definition of statistical and A— statistical
convergence of order o in random 2-normed spaces. Before we start, it would be

convenient to recall the DEFINITION of p—convergent sequences due to Mursaleen
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and Noman (166).

Let 1 = (ux) be a sequence of positive real numbers tending to infinity such that
0 < pp < py < pg...andpp — ocoask — co.

Then, a sequence z = (xj) of numbers is said to be p-convergent to a number [ if

Az, — lask — 0o, where

Axk—_z ,U/zl

MkzO

DEFINITION 6.1.1 A sequence x = (x1,) in a random 2-normed space (X, F, x)
is said to be statistically convergent of order a (0 < a < 1) to xg € X provided that,
for every e >0,t € (0,1) and 0 # z € X,

lim —|{k€N F(Azg — x0,2;€) < 1—1t}| =0,

n—oo ’n,

or equivalently

lim —|{k:€N F(Axy — o, 2;€) > 1 —t}| = 1.

n—oo N

In this case, we write ST2N () — limy_ o0 71 = To.
Let, STV () denotes the set of all statistically convergent sequences of order «

in a random 2-normed space (X, F,x).

DEFINITION 6.1.2 Let A = (\,) be a non-decreasing sequence of positive real
numbers tending to oo with A\py1 < Ay + 1,A\ = 1. A sequence x = (zx) in a
random 2-normed space (X, F, %) is said to be A— statistically convergent of order «

(0 <a<1)toxy € X provided that, for everye >0,t € (0,1) and 0 # z € X,

lim >\—|k‘€] : F(Azy, — 2, 25¢) <1 —1t}| =0,

n—o0
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or equivalently

1
lim F|k)€[n:]:(/\l’k—$0>z§€) >1-t} =1,

n—oo
where A denote the ath power of A, i.e., (AY) = (A}, A$, A, -+ ). In this case,
we write ST (o) — limy 00 2 = 0.
Let, SN () denotes the set of all A- statistically convergent sequences of order

a in a random 2-normed space (X, F, *).

For the particular choice a = 1, DEFINITION 6.1.2 coincides with the notion of A—
statistical convergence of (3); For A\, = n, DEFINITION 6.1.2 coincides with the
notion of statistical convergence of order « in random 2-normed space; For A, = n
and o = 1, DEFINITION 6.1.2 coincides with the notion of statistical convergence

in random 2-normed space (163).

We next give EXAMPLE that shows DEFINITION 6.1.2 is well defined for (0 < a <
1) but not for @ > 1. In view of this we need the following theorem with LEMMA.

LEMMA 6.1.1 Let A = (\,) be a non-decreasing sequence as defined above and
(X, F,*) be a random 2-normed space. Let 0 < a < 1 and © = (x) be a sequence
in X. Then, fore > 0,t € (0,1) and 0 # z € X, the following statements are

equivalent:

(i) ST2N () — limy 00 71 = To,

(ii) lim,, 0 é ke l,: F(Azy — xg,2;¢) <1 —1t}] =0,
(117) lim,, o é |k €I, : F(Axyp —x9,2;€) > 11—t} =1,

(iv) SE*N () — limg_oo F(Azp — T, 25€) = 1.

THEOREM 6.1.1 Let (X, F,*) be a random 2-normed space and 0 < o < 1 be
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giwen. If STV (a) — limy,_,o0 71 = To, then zo must be unique.
Proof Suppose SV (a) — limy_o 7 = yo where yo # 1. Given ¢ > 0 and ¢t > 0,

choose n > 0 such that (1 —n)* (1 —n) >1—¢€. For § # z € X, define
t
Ki(n,t) = {k€[n1F<A$k—$0,Z;§) < 1—77};
t
Ki(n,t) = {ke]n:]:<Axk—y0,z;§> < 1—7;}.

Since SI2N () — limy o0 71, = o and SN () — im0 71 = Yo, it follows for every

t >0,

1 1
lim — |Ki(n,t)] =0 and lim — |Ky(n,t)|=0
)\% n—00 )\%

n—oo

Let K(n,t) = Ki(n,t) U Ky(n,t), then clearly lim, o 1= [K(n,t)| = 0 which imme-
diately implies limy, o 5= |[K€(n,t)] = 1. Let k € K¢(n,t) = K{(n,t) N K5(n,t). Now

one can write,
t t t
]:(xo—yo,z;g) Z]:<A$k—l“o,z;§) *F(Amk—yo,z;§) >1—=n)*x(1-n)>1—c¢

Since € is arbitrary, it follows that F (xo — Yo, Z; %) =1,fort >0and 0 # 2z € X.
This shows that zg = y,. B

EXAMPLE 6.1.1 Let X = R? with the 2— norm ||z, z|| = [|z122 — 92| where
x = (r1,%2), 2 = (21,20) and a * b = ab for all a,b € [0,1]. Let F (z,2;t) = m

where z € X,t € (0,1) and § # z € X. Then (R?, F, %) is a random 2-normed space.

We define a sequence x = () as follows:

(1,0), if k is even,
AZL‘k =
(0,0), if k is odd.
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For e > 0,¢t € (0,1), if we define

K(e,t)={kel,: F(Axp—0,2z;t) <1—¢€},0=(0,0)

t
=<kel,: <1-
{e t+ ||Axy — 6, 2|| — 6}

t
:{ke_fn:|]/\xk—9,z||21€—>0}
—€

= {k € I, : Azy, = (1,0)}

={kel,:kiseven};

then,
.1 o1 o W+
nll_I)IolO /\—%|K(e,t)| = nh—{IOlO/\_g {k €I, :kiseven}| < JEI;W =0
for a > 1.
Similarly, for e > 0 and ¢t € (0,1) if we define
B(e,t) ={k eI, : F(Axy —xo,2;t) < 1—¢€},20 = (1,0)
then
1 1 VA +1
nll_{rolo )\—%|B(6,t)| = 7}1_1)1010/\—% {k e, kisodd }| < 7111_13010% =0

for a > 1.

This shows that SV (a) — limy, 2, is not unique and we obtain a contradiction to

THEOREM 6.1.1.

The next THEOREM reveals the relation between ordinary convergence and A—

statistical convergence of order « in a random 2-normed space.

THEOREM 6.1.2 Let (X,F,*) be a random 2-normed space and 0 < o < 1 be
given. For a sequence v = (z) in X if Fa—limy, zp = xo, then ST (o) —limy x5 = .

However, the converse need not be true in general.
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Proof Since F) — limy, x = xq, so for e > 0, ¢t € (0,1) and 0 # z € X there exists a
positive integer ng such that F (Azy — xg,2;t) > 1 —¢€ for all k > ng. Hence the
set, K(e,t) ={kel,: F(Axy —zo,2;t) <1—¢€} C {1,2,3,...,n9 — 1}, for which

we have

1
lim [ {k € L : F(Avy — 29, 21) <1 — e} = 0.

n—o0

This shows that SV (a) — limy, 2, = .

We next give the following EXAMPLE which shows that the converse need not be

true.

EXAMPLE 6.1.2 Consider the random 2-normed space as in EXAMPLE 6.1.1.

Define a sequence = = (zy) as follows:

(k,0), ifn—[VA]+1<k<n,
AiL‘k =
0,0), otherwise.
For e > 0 and ¢t > 0 if we define K (e,t) = {k € I,, : F (Axy, z;t) <1 — €}, then one
can write as in EXAMPLE 6.1.1, K(e,t) = {k € I, :n — [V/A,] + 1 < k < n}.
Thus,

1 1
thjKQJM:thEer@:n—hM4+1gkgnH
n—oo

n—oo

< lim@

T n—oo )\?L‘

=0

for % < a < 1. This shows that STV (a) — limy, 2, = 0. But Fp — limy, 23, # 0, since

F (Axy, z;t) =

t + ||Axy, 2||

t g fn-[WVAl+1<k<n,
1, otherwise.
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which implies

lim F (Axy, 2z;t) = |

k—oo 1, otherwise.

{0, if n—[vA]+1<k<n,

THEOREM 6.1.3 Let (X, F,%) be a random 2-normed space and 0 < o < 1 be

given. Let x = (xy) and y = (yx) be two sequences in X.
(i) If STN (o) —limp oo 7x = 29 and 0 # ¢ € R, then SN () —limy_,o0 cxp = cz.

(ii) If SN (o) —limy o0 7 = mo and If ST (o) — limy o0 Y = Yo, then STV (o) —

lim(zg + yx) = To + Yo

Proof The proof of the Theorem is not so hard so is omitted here. B

THEOREM 6.1.4 Let (X, F,*) be a random 2-normed space and 0 < o < <1

be given. Then SN (a) C SFN(B) and the inclusion is strict for some o and B such

that o < .
Proof 1f 0 < a < <1, then for every ¢ > 0, ¢t > 0 and 6 # z € X, we have

1 1
7 |{k€]n:}"(A:vk—l,z;t)§1—6}|SF H{kel,: F(Axp—1,2;t) <1—¢€}|;

n n

which immediately implies the inclusion STV (a) C SN ().

We next give an EXAMPLE that shows the inclusion in S{V(a) € SV () is strict

for some o and § with a < .

EXAMPLE 6.1.3 Let (R?, F,x) be a random 2-normed space as defined above.

We define a sequence x = (x) as follows:

(1,0), ifn— [V +1<k<n,
ACL’k =
(0,0), otherwise.
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Then one can easily see SY?N(3) — limy, 2, = 0, i.e., z € SPN(B) for 1 < f <1 but
z ¢ SN (a) for 0 < a < . This shows that the inclusion in SF2N(a) C SN (B) is

strict.

THEOREM 6.1.5 Let (X, F,%) be a random 2-normed space and 0 < o < 1 be
given. If ¥ = () be a sequence in X, then STV (a) — limy zp, = x¢ if and only if
there exists a subset K = {ky,, : k1 < ko < ...} of N such that lim,,_,. %\K\ =1 and
Fa — limy, xp = x9.

Proof First suppose that SFN (o) — limg 7 = 2. For ¢t > 0,0 # 2 € X and p € N,

if we define
1
K(p,t) = {ke[n:}"(/\xk—xo,z;t) < 1—]—9}
1
M(p,t) = {ke I, : F (Azy, — xo, 2;t) > 1——};
p
then,

n—00 \

1
lim —[K(p,t)| =0.

Also, forp=1,2,3,...

M(1,t) D M(2,t) D ... M(i,t) D M(i+1,t) D ... (6.1.1)
and
_ 1
nh—r>I<>10 )\—%\M(p, t) = 1. (6.1.2)

Now to prove the result in one way it is sufficient to prove that Fy — limg xp = xg
over M(p,t). Suppose x, is not convergent to xq over M(p,t) with respect to the

norm F,. Then, there exists some 1 > 0 such that

(ke N:F(Axy —xo,2;t) <1—1n}
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for infinitely many terms x;. Let,
M(n,t) ={kel,: F(Axy — xo,2;t) > 1 —n}.

and n > % for p = 1,2,3---. This implies that limnﬁoo%%|M(n,t)| = 0. Also
from (6.1.1), we have Ki(p,t) C M(n,t) which gives that lim,, . é\M(p, t)] =0,
this contradicts (6.1.2). Hence Fj — limy x;, = xo. Conversely, suppose that there
exists a subset K = {k,, : k1 < ko < ...} of N such that lim, $|K| = 1 and
Fa — limg xp = xg. Then for every t > 0, € > 0 and 6 # z € X there exists a positive

integer ko such that,
{kel,: F(Avy —xo,2;t) > 1 —€}

for all k& > ko. Since the set {k € I,, : F (Axy — xo,2;t) <1 — €} is contained in
N —{ko+1,ky+2,ko+ 3, -} therefore,

1
lim — |{k € I, : F (Awy — 20, 2;t) < 1 —¢}| = 0.
n—oo A%

R2N

Hence, Sy (o) — limy, zp, = x9. W

DEFINITION 6.1.3 Let (X, F,*) be a random 2-normed space. A sequence v =
(xx) is said to be A— statistically Cauchy of order a (0 < a < 1) if for every e > 0,
t € (0,1) and 0 # z € X there exists a positive integer ko such that for all k,1 > kg

1
lim — |kel,: F(Axy — Az, z5¢) <1 -t} =0

n—oo A%
n

or equivalently

1
lim — |kel,: F(Axy — Azy,z5¢) > 1 -t} = 1.

n—00 )\?L‘

THEOREM 6.1.6 Let (X, F,*) be a random 2-normed space and 0 < o < 1 be
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given. Then a sequence x = (xy) is said to be A— statistically convergent of order «
iff it is A— statistically Cauchy of order c.

Proof Let x = (z3) be a A— statistically convergent sequence of order a. Suppose
that SV (a) —limy 2y = xo. Let € > 0. Choose r > 0 such that (1—7)*(1—7) > 1—e.
If we define

t
K(r,t):{ke]n:}"</\a:k—x0,z;§)Sl—r},then
t
Kc(r,t):{ke[n:]—"<Azxk—x0,z;§)>1—7’};
which gives by virtue of S§ — limy, ), = z,
lim ——|K(r,6)] =0 and Tim —|K(r,£)| = 1
Jim, S0l =0 and - Jim S K7C, 0] =1

Let m € K°(r,t), then F (Az,, — o, 2; %) > 1 —r. If we take,

B(e,t) ={k €I, : F(Axy — Axyy, 25t) < 1 — €},

then to prove the first part it is sufficient to prove that B(e,t) C K(r,t). Let
k € B(e,t), which gives F (Axy — Ax,,, 2;t) < 1 — €. Suppose k ¢ K(r,t), then

F (A:z:k — xg, 2; %) > 1 —r. Now, we can observe that,

1—€Zf(Axk_Axmazvt)ZF(A‘%R—‘%O’ Z5 ) (Al'm Lo, 25 )

>1—ce

This contradiction clearly shows that B(e,t) C K(r,t) and therefore one way of the
THEOREM is proved.
Conversely, Suppose that z = () is A— statistically Cauchy sequence of order « but

not A— statistically convergent of order o with respect to F. Then for every ¢ > 0,
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€ >0 and 0 # z € X there exists a positive integer m such that

1
lim F|K(€7t>| = Owhere K (¢,t) ={k € I,, : F (Axy, — Az, 2;t) < 1 —€}.

n—oo
This implies that limy, o 55 |K(e,¢)| = 1. Choose r > 0 such that (1 —r)*(1—r) >
1 —e. Let
t
B(r,t) = {k‘ el, :]—“(A:z:k—a:o,z;§> > 1 —T}.

Let m € B(r,t), then F (Az,, — x0,2;%) > 1—r.

Since
t t
F (Axy — Axpy, 25t) > F <Axk — T, 2; 5) x F (Amm — Zo, 2; 5)
>(1—=r)x(1—=1)
>1—¢
therefore,
1
lim o keI, : F(Axy — Axy,, 25t) > 1 —€}| = 0.
n—oo A%
i.e. limy, o0 35 |K¢(€, )] = 0 which leads to a contradiction. Hence z = () is A—

statistically convergent of order ov. M

6.2 Conclusion

We have defined generalized statistical convergence of order o in Random 2—normed
space which is more general than A— statistical convergence of order o in Random
2—normed space. The particular choices of a give different convergence methods that
shows our method of convergence is more general. For the particular choice o = 1,
this generalized concept coincides with the notion of A— statistical convergence of
(3); For X\, = n, it coincides with the notion of statistical convergence of order «
in random 2-normed space; For A\, = n and o = 1, it coincides with the notion of

statistical convergence in random 2-normed space.ll



