Carbon Metabolism and Water Relations of Six Woody Weed Species and Their Modification by Paraquat and 2, 4, 5-T

Thesis submitted to Sri Venkateswara University for the Degree of Doctor of Philosophy

BY

I. Madhusudana Rao, M.Sc.

Department of Botany
Sri Venkateswara University
TIRUPATI (A.P.), INDIA

January, 1973
To my brother

Late Sri I.V. Subba Rao
ACKNOWLEDGMENTS

With great pleasure I express my deep felt gratitude to Dr. P. K. Swamy, D.Sc.,Ph.D., Reader in Botany, Sri Venkateswara University, Tirupati for his supervision during this investigation and for his guidance in the preparation of the thesis.

I wish to express my deep felt gratitude to Professor V. S. R. Das, D.Sc.,P.Hil.(Oxon.),F.A.Sc., F.N.A., Head of the Department of Botany and Vice-Principal (Sciences), Sri Venkateswara University, Tirupati, for his constant encouragement, several suggestions and many fruitful discussions during this investigation. I also express my thanks to him for allowing me to use his personal library.

This investigation was carried out in UFDA-480 Research Project PG-IN-544 (IN-ARS-27) entitled "Studies on the mode of action of chemicals on the physiology of stomatal resistance in some plants" sanctioned to Professor V. S. R. Das.

I am grateful to United States Department of Agriculture for supporting me with a research assistantship. I am also grateful to Dr. Herbert N. Bull, UFDA-ARS Western Region, Tucson, Arizona, U.S.A. for his interest and many useful comments on this work.
I am thankful to Dr. A. C. Rachavendra, Department of Botany, Sri Venkateswara University, Tirupati and Dr. N. Santakurari (now at Department of Bio-Sciences, Post-Graduate Centre, Anantapur) for their kind help during the study. I am also thankful to Sri V. Subhadra Devi and Sri S. Samba Varthy for their kind cooperation and team-work during the course of work in the UDF-400 Research Project.

My thanks are also due to Dr. J. V. Srinivasa Rao, Reader in Botany, and other staff members as well as research scholars of Department of Botany, Sri Venkateswara University, Tirupati, for their help at various stages of this investigation.
CONTENTS

INTRODUCTION... 1

MATERIALS AND METHODS................................. 19

Plant materials... 19
Herbicide treatment..................................... 19
Sampling.. 20

EXPERIMENTAL METHODS....................................

Leaf anatomy.. 20
Stomatal aperture.. 21
Stomatal conductance..................................... 22
Potential transpiration rate.............................. 23
Leaf water potential..................................... 23
14CO$_2$ uptake by leaves.............................. 25

14CO$_2$ fixation by isolated chloroplasts........... 26

Titratable acidity....................................... 27
Malic acid content....................................... 27
Enzyme compliment of leaves............................ 29
Photochemical activities................................ 31
Total chlorophyll.. 35
Chlorophyll a, chlorophyll b and chlorophyll a/b ratio 36

Cytochromes... 36
Leaf moisture content.................................. 39
Leaf area... 39

RESULTS.. 40

Morphological features................................ 40
Leaf anatomy .. 40
Stomatal behaviour .. 41
Transpiration .. 42
Leaf water potential .. 43
14CO$_2$ uptake by leaves .. 43
14CO$_2$ assimilation by isolated chloroplasts .. 44
Dark acidification .. 45
Photosynthetic enzymes .. 46
Photochemical activities .. 49
Total chlorophyll .. 52
Chlorophyll a, chlorophyll b .. 52
and chlorophyll a/b ratio
Cytochromes .. 53
Leaf moisture content .. 53
Phytotoxic symptoms .. 54
DISCUSSION .. 55
SUMMARY .. 75
LITERATURE CITED .. 84
APPENDIX
Publications by the author .. 112
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>Atrazine</td>
<td>2-chloro-4-ethylamino-6-(isopropylamino)-s-triazine</td>
</tr>
<tr>
<td>CAM</td>
<td>Cressulaceae acid metabolism</td>
</tr>
<tr>
<td>Cyt</td>
<td>Cytochrome</td>
</tr>
<tr>
<td>DCMU</td>
<td>3-(3,4-dichlorophenyl)-1,1'-dithioureia</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>2,6-dichlorophenol indophenol</td>
</tr>
<tr>
<td>Diquat</td>
<td>6,7-dihydrodipyrido (1,2-a:2',1'-c) pyrazinediuron</td>
</tr>
<tr>
<td>Diuron</td>
<td>3-(3,4-dichlorophenyl)-1,1'-dithioureia</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>Urea</td>
<td>Ethylenediamino tetraacetate</td>
</tr>
<tr>
<td>xg</td>
<td>Gravity</td>
</tr>
<tr>
<td>GA</td>
<td>Gibberellic acid</td>
</tr>
<tr>
<td>HP</td>
<td>High potential</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>The molar concentration of inhibitor giving 50% inhibition</td>
</tr>
<tr>
<td>IAA</td>
<td>Indoleacetic acid</td>
</tr>
<tr>
<td>LP</td>
<td>Low potential</td>
</tr>
<tr>
<td>mCi</td>
<td>Millisieverts</td>
</tr>
<tr>
<td>m. eq</td>
<td>Milli equivalents</td>
</tr>
<tr>
<td>NAD</td>
<td>Niacinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADP</td>
<td>Niacinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
</tbody>
</table>
(iv)

OAA : Oxaloacetate

gD : Optical density

Paraquat : 1,1'-dimethyl-4,4'-bipyridinium ion

PEP : Phosphoenolpyruvate

Pentachlor : 3'-chloro-2-methyl-p-valero-toluidide

Phenmedipham : Methyl m-hydroxycarbanilate m-methyl carbanilate

Picloram : 4-amino-3,5,6-trichloronicotinic acid

Pi : Inorganic phosphate

Proetryne : 2,4-bis(isopropylarino)-6-(methylthio)-s-triazine

Propanil : 3',4'-dichloropropanilide

Pyrazone : 5-amino-4-chloro-2-phenyl-3-(2H)-pyridazinone

RuBP : Ribulose bisphosphate

SE : Standard error

Simazine : 2-chloro-4,6-bis(ethylarino)-s-triazine

s.g : Specific gravity

TCA : Trichloroacetic acid

Terbacin : 3-tert-butyl-5-chloro-6-methyluracil

2,4-D : (2,4-dichlorophenoxy) acetic acid

2,4,5-T : (2,4,5-trichlorophenoxy) acetic acid