<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 1.1</td>
<td>Simplified Representation of Fractionation of Petroleum</td>
<td>4</td>
</tr>
<tr>
<td>Fig 1.2</td>
<td>Structure of Wax Crystal</td>
<td>5</td>
</tr>
<tr>
<td>Fig.1.3</td>
<td>Hypothetical ashphaltene molecules</td>
<td>7</td>
</tr>
<tr>
<td>Fig.1.4</td>
<td>Model of an Ashphaltene aggregate stabilized by resin molecules</td>
<td>8</td>
</tr>
<tr>
<td>Fig 1.5</td>
<td>Fractional Distillation</td>
<td>11</td>
</tr>
<tr>
<td>Fig.1.6</td>
<td>Simple Distillation</td>
<td>11</td>
</tr>
<tr>
<td>Fig.1.7</td>
<td>Flow sheet diagram for Continuous Distillation</td>
<td>11</td>
</tr>
<tr>
<td>Fig.1.8</td>
<td>Laboratory set up for Vacuum Distillation</td>
<td>12</td>
</tr>
<tr>
<td>Fig.1.9</td>
<td>Azeotropic Distillations</td>
<td>13</td>
</tr>
<tr>
<td>Fig.1.10</td>
<td>Water content determination using Dean and Stark Adaptor</td>
<td>14</td>
</tr>
<tr>
<td>Fig.1.11</td>
<td>Shear Stress and Shear Rate based on shearing between plates</td>
<td>17</td>
</tr>
<tr>
<td>Fig.1.12</td>
<td>Hypothetical layers in Shear Flow</td>
<td>18</td>
</tr>
<tr>
<td>Fig.1.13</td>
<td>Time Dependent and Time Independent Flow Behavior of Fluid</td>
<td>18</td>
</tr>
<tr>
<td>Fig.1.14</td>
<td>Newtonian Flows</td>
<td>19</td>
</tr>
<tr>
<td>Fig.1.15</td>
<td>Shear Thinning Flow</td>
<td>19</td>
</tr>
<tr>
<td>Fig.1.16</td>
<td>Bingham Body Flow</td>
<td>20</td>
</tr>
<tr>
<td>Fig.1.17</td>
<td>Shear Thickening Flow</td>
<td>21</td>
</tr>
<tr>
<td>Fig.1.18</td>
<td>Thixotropic Fluids</td>
<td>21</td>
</tr>
<tr>
<td>Fig.1.19</td>
<td>Crude Oil Transportation</td>
<td>22</td>
</tr>
<tr>
<td>Fig.1.20</td>
<td>Reduction in pipeline diameter due to wax deposition</td>
<td>22</td>
</tr>
<tr>
<td>Fig.1.21</td>
<td>Blocked pipelines</td>
<td>23</td>
</tr>
<tr>
<td>Fig.1.22</td>
<td>Gibb’s Theory: Discontinuous Layer Addition</td>
<td>23</td>
</tr>
<tr>
<td>Fig.1.23</td>
<td>Frank’s Theory: Continuous Growth via dislocation</td>
<td>24</td>
</tr>
<tr>
<td>Fig.1.24</td>
<td>Different Methods for Wax Deposition Control</td>
<td>25</td>
</tr>
<tr>
<td>Fig.1.25</td>
<td>Mechanism of wax crystal growth without and with additives</td>
<td>27</td>
</tr>
<tr>
<td>Fig.1.26</td>
<td>Mechanism of Pour Point Depression</td>
<td>28</td>
</tr>
<tr>
<td>Fig.1.27</td>
<td>Mechanism of formation of Dendrite Crystals</td>
<td>29</td>
</tr>
<tr>
<td>Fig.1.28</td>
<td>Stages of Crystal Size Modification</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 2.1</td>
<td>Structure of Polyalkyl Acrylate and Polyalkyl Methacrylate</td>
<td>35</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Homolytic Fission of Benzyol Peroxide</td>
<td>36</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Propagation Stage</td>
<td>37</td>
</tr>
<tr>
<td>Fig. 2.4(a)</td>
<td>Termination Stage by way of combination</td>
<td>37</td>
</tr>
<tr>
<td>Fig. 2.4(b)</td>
<td>Termination stage by way of disproportion</td>
<td>37</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>FTIR spectrum of 8RA</td>
<td>39</td>
</tr>
<tr>
<td>Fig. 2.6</td>
<td>FTIR spectrum of 818 RA (Terpolymer)</td>
<td>42</td>
</tr>
<tr>
<td>Fig. 2.7</td>
<td>FTIR spectrum of 818RA18N</td>
<td>44</td>
</tr>
<tr>
<td>Fig. 2.8</td>
<td>FTIR spectrum of 8OA</td>
<td>46</td>
</tr>
<tr>
<td>Fig. 2.9</td>
<td>FTIR spectrum of 812OA (Terpolymer)</td>
<td>49</td>
</tr>
<tr>
<td>Fig. 2.10</td>
<td>FTIR spectrum of 812OA18N</td>
<td>51</td>
</tr>
<tr>
<td>Fig. 2.11</td>
<td>FTIR spectrum of 8CA</td>
<td>53</td>
</tr>
<tr>
<td>Fig. 2.12</td>
<td>FTIR spectrum of 812CA (Terpolymer)</td>
<td>56</td>
</tr>
<tr>
<td>Fig. 2.13</td>
<td>FTIR spectrum of 812CA18N</td>
<td>58</td>
</tr>
<tr>
<td>Fig. 2.14</td>
<td>FTIR spectrum of 10UA</td>
<td>60</td>
</tr>
</tbody>
</table>
Fig. 2.15 FTIR spectrum of 810UA (Terpolymer)
Fig. 2.16 FTIR spectrum of 810UA18N
Fig. 3.1 Apparatus for Pour Point Determination
Fig. 3.2 TA AR 1500ex Rheometer
Fig. 3.3 Rheogram of Virgin Kosamba-47 crude oil at 30°C
Fig. 3.4 Rheogram of Virgin Kosamba-47 crude oil at 33°C
Fig. 3.5 Rheogram of Virgin Kosamba-47 crude oil at 36°C
Fig. 3.6 Rheogram of Virgin Kosamba-47 crude oil at 39°C
Fig. 3.7 Rheogram of Kosamba-47 crude oil with 500 ppm of 814UA18N at 30°C
Fig. 3.8 Rheogram of Kosamba-47 crude oil with 500 ppm of 814UA18N at 33°C
Fig. 3.9 Rheogram of Kosamba-47 crude oil with 500 ppm of 814UA18N at 36°C
Fig. 3.10 Rheogram of Kosamba-47 crude oil with 500 ppm of 814UA18N at 39°C
Fig. 3.11 Rheogram of Kosamba-47 crude oil with 1000 ppm of 814UA18N at 30°C
Fig. 3.12 Rheogram of Kosamba-47 crude oil with 1000 ppm of 814UA18N at 33°C
Fig. 3.13 Rheogram of Kosamba-47 crude oil with 1000 ppm of 814UA18N at 36°C
Fig. 3.14 Rheogram of Kosamba-47 crude oil with 1000 ppm of 814UA18N at 39°C
Fig. 3.15 Rheogram of Kosamba-47 crude oil with 500 ppm of 816UA18N at 36°C
Fig. 3.16 Rheogram of Kosamba-47 crude oil with 500 ppm of 816UA18N at 33°C
Fig. 3.17 Rheogram of Kosamba-47 crude oil with 500 ppm of 816UA18N at 36°C
Fig. 3.18 Rheogram of Kosamba-47 crude oil with 500 ppm of 816UA18N at 39°C
Fig. 3.19 Rheogram of Kosamba-47 crude oil with 1000 ppm of 816UA18N at 30°C
Fig. 3.20 Rheogram of Kosamba-47 crude oil with 1000 ppm of 816UA18N at 33°C
Fig. 3.21 Rheogram of Kosamba-47 crude oil with 1000 ppm of 816UA18N at 36°C
Fig. 3.22 Rheogram of Kosamba-47 crude oil with 1000 ppm of 816UA18N at 39°C
Fig. 3.23 Rheogram of Kosamba-47 crude oil with 500 ppm of 86CA18N at 30°C
Fig. 3.24 Rheogram of Kosamba-47 crude oil with 500 ppm of 86CA18N at 33°C
Fig. 3.25 Rheogram of Kosamba-47 crude oil with 500 ppm of 86CA18N at 36°C
Fig. 3.26 Rheogram of Kosamba-47 crude oil with 500 ppm of 86CA18N at 39°C
Fig. 3.27 Rheogram of Kosamba-47 crude oil with 1000 ppm of 86CA18N at 30°C
Fig. 3.28 Rheogram of Kosamba-47 crude oil with 1000 ppm of 86CA18N at 33°C
Fig. 3.29 Rheogram of Kosamba-47 crude oil with 1000 ppm of 86CA18N at 36°C
Fig. 3.30 Rheogram of Kosamba-47 crude oil with 1000 ppm of 86CA18N at 39°C
Fig. 3.31 Rheogram of Kosamba-47 crude oil with 500 ppm of 818CA18N at 30°C
Fig. 3.32 Rheogram of Kosamba-47 crude oil with 500 ppm of 818CA18N at 33°C
Fig. 3.33 Rheogram of Kosamba-47 crude oil with 500 ppm of 818CA18N at 36°C
Fig. 3.34 Rheogram of Kosamba-47 crude oil with 500 ppm of 818CA18N at 39°C
Fig. 3.35 Rheogram of Kosamba-47 crude oil with 1000 ppm of 818CA18N at 30°C
Fig. 3.36 Rheogram of Kosamba-47 crude oil with 1000 ppm of 818CA18N at 33°C
Fig. 3.37 Rheogram of Kosamba-47 crude oil with 1000 ppm of 818CA18N at 36°C
Fig. 3.38 Rheogram of Kosamba-47 crude oil with 1000 ppm of 818CA18N at 39°C
Fig. 3.39 Rheogram of Kosamba-47 crude oil with 500 ppm of 814RA18N at 30°C
Fig. 3.40 Rheogram of Kosamba-47 crude oil with 500 ppm of 814RA18N at 33°C
Fig. 3.41 Rheogram of Kosamba-47 crude oil with 500 ppm of 814RA18N at 36°C
Fig. 3.42 Rheogram of Kosamba-47 crude oil with 500 ppm of 814RA18N at 39°C
Fig. 3.43 Rheogram of Kosamba-47 crude oil with 1000 ppm of 814RA18N at 30°C
Fig. 3.44 Rheogram of Kosamba-47 crude oil with 1000 ppm of 814RA18N at 33°C
Fig. 3.45 Rheogram of Kosamba-47 crude oil with 1000 ppm of 814RA18N at 36°C
Fig. 3.46 Rheogram of Kosamba-47 crude oil with 1000 ppm of 814RA18N at 39°C

xi
Fig. 3.91 Rheogram of Kosamba-33 crude oil with 1000 ppm of 822UA18N at 36°C 130
Fig. 3.92 Rheogram of Kosamba-33 crude oil with 500 ppm of 810RA18N at 30°C 130
Fig. 3.93 Rheogram of Kosamba-33 crude oil with 1000 ppm of 810RA18N at 30°C 131
Fig. 3.94 Rheogram of Kosamba-33 crude oil with 500 ppm of 810RA18N at 33°C 131
Fig. 3.95 Rheogram of Kosamba-33 crude oil with 1000 ppm of 810RA18N at 33°C 132
Fig. 3.96 Rheogram of Kosamba-33 crude oil with 500 ppm of 810RA18N at 36°C 132
Fig. 3.97 Rheogram of Kosamba-33 crude oil with 1000 ppm of 810RA18N at 36°C 133
Fig. 3.98 Rheogram of Kosamba-33 crude oil with 500 ppm of 810RA18N at 39°C 133
Fig. 3.99 Rheogram of Kosamba-33 crude oil with 1000 ppm of 810RA18N at 39°C 134
Fig. 3.100 Rheogram of Kosamba-33 crude oil with 500 ppm of 812RA18N at 30°C 134
Fig. 3.101 Rheogram of Kosamba-33 crude oil with 1000 ppm of 812RA18N at 30°C 135
Fig. 3.102 Rheogram of Kosamba-33 crude oil with 500 ppm of 812RA18N at 33°C 135
Fig. 3.103 Rheogram of Kosamba-33 crude oil with 1000 ppm of 812RA18N at 33°C 136
Fig. 3.104 Rheogram of Kosamba-33 crude oil with 500 ppm of 812RA18N at 36°C 136
Fig. 3.105 Rheogram of Kosamba-33 crude oil with 1000 ppm of 812RA18N at 36°C 137
Fig. 3.106 Rheogram of Kosamba-33 crude oil with 500 ppm of 812RA18N at 39°C 137
Fig. 3.107 Rheogram of Kosamba-33 crude oil with 1000 ppm of 812RA18N at 39°C 138
Fig. 3.108 Rheogram of Kosamba-33 crude oil with 500 ppm of 810CA18N at 30°C 138
Fig. 3.109 Rheogram of Kosamba-33 crude oil with 1000 ppm of 810CA18N at 30°C 139
Fig. 3.110 Rheogram of Kosamba-33 crude oil with 500 ppm of 810CA18N at 33°C 139
Fig. 3.111 Rheogram of Kosamba-33 crude oil with 1000 ppm of 810CA18N at 33°C 140
Fig. 3.112 Rheogram of Kosamba-33 crude oil with 500 ppm of 810CA18N at 36°C 140
Fig. 3.113 Rheogram of Kosamba-33 crude oil with 1000 ppm of 810CA18N at 36°C 141
Fig. 3.114 Rheogram of Kosamba-33 crude oil with 500 ppm of 810CA18N at 39°C 141
Fig. 3.115 Rheogram of Kosamba-33 crude oil with 1000 ppm of 810CA18N at 39°C 142
Fig. 3.116 Rheogram of Kosamba-33 crude oil with 500 ppm of 814CA18N at 30°C 142
Fig. 3.117 Rheogram of Kosamba-33 crude oil with 1000 ppm of 814CA18N at 30°C 143
Fig. 3.118 Rheogram of Kosamba-33 crude oil with 500 ppm of 814CA18N at 33°C 143
Fig. 3.119 Rheogram of Kosamba-33 crude oil with 1000 ppm of 814CA18N at 33°C 144
Fig. 3.120 Rheogram of Kosamba-33 crude oil with 500 ppm of 814CA18N at 36°C 144
Fig. 3.121 Rheogram of Kosamba-33 crude oil with 1000 ppm of 814CA18N at 36°C 145
Fig. 3.122 Rheogram of Kosamba-33 crude oil with 500 ppm of 814CA18N at 39°C 145
Fig. 3.123 Rheogram of Kosamba-33 crude oil with 1000 ppm of 814CA18N at 39°C 146
Fig. 3.124 Rheogram of Kosamba-33 crude oil with 500 ppm of 816OA18N at 30°C 146
Fig. 3.125 Rheogram of Kosamba-33 crude oil with 1000 ppm of 816OA18N at 30°C 147
Fig. 3.126 Rheogram of Kosamba-33 crude oil with 500 ppm of 816OA18N at 33°C 147
Fig. 3.127 Rheogram of Kosamba-33 crude oil with 1000 ppm of 816OA18N at 33°C 148
Fig. 3.128 Rheogram of Kosamba-33 crude oil with 500 ppm of 816OA18N at 36°C 148
Fig. 3.129 Rheogram of Kosamba-33 crude oil with 1000 ppm of 816OA18N at 36°C 149
Fig. 3.130 Rheogram of Kosamba-33 crude oil with 500 ppm of 816OA18N at 39°C 149
Fig. 3.131 Rheogram of Kosamba-33 crude oil with 1000 ppm of 816OA18N at 39°C 150
Fig. 3.132 Rheogram of Kosamba-33 crude oil with 1000 ppm of 816OA18N at 39°C 150
Fig. 3.133 Rheogram of Kosamba-33 crude oil with 1000 ppm of 818OA18N at 30°C 151
Fig. 3.134 Rheogram of Kosamba-33 crude oil with 1000 ppm of 818OA18N at 30°C 151
Fig. 3.135 Rheogram of Kosamba-33 crude oil with 1000 ppm of 818OA18N at 33°C 152
Fig. 3.136 Rheogram of Kosamba-33 crude oil with 500 ppm of 818OA18N at 36°C 152
Fig. 3.137 Rheogram of Kosamba-33 crude oil with 1000 ppm of 818OA18N at 36°C 153
Fig. 3.138 Rheogram of Kosamba-33 crude oil with 500 ppm of 818OA18N at 39°C 153
Fig. 3.139 Rheogram of Kosamba-33 crude oil with 1000 ppm of 818OA18N at 39°C 154
Fig. 3.140 Rheogram of Bombay High Virgin Crude oil at 13°C 162
Fig. 3.141 Rheogram of Bombay High Virgin Crude oil at 16°C 162
Fig. 3.142 Rheogram of Bombay High Virgin Crude oil at 19°C 163
Fig. 3.143 Rheogram of Bombay High Virgin Crude oil at 22°C 163
Fig. 3.144 Rheogram of Bombay High Crude oil with 500 ppm of 86UA18N at 10°C 164
Fig. 3.145 Rheogram of Bombay High Crude oil with 500 ppm of 86UA18N at 13°C 164
Fig. 3.146 Rheogram of Bombay High Crude oil with 500 ppm of 86UA18N at 16°C 165
Fig. 3.147 Rheogram of Bombay High Crude oil with 500 ppm of 86UA18N at 19°C 165
Fig. 3.148 Rheogram of Bombay High Crude oil with 500 ppm of 86UA18N at 22°C 166
Fig. 3.149 Rheogram of Bombay High Crude oil with 1000 ppm of 86UA18N at 10°C 166
Fig. 3.150 Rheogram of Bombay High Crude oil with 1000 ppm of 86UA18N at 13°C 167
Fig. 3.151 Rheogram of Bombay High Crude oil with 1000 ppm of 86UA18N at 16°C 167
Fig. 3.152 Rheogram of Bombay High Crude oil with 1000 ppm of 86UA18N at 19°C 168
Fig. 3.153 Rheogram of Bombay High Crude oil with 1000 ppm of 86UA18N at 22°C 168
Fig. 3.154 Rheogram of Bombay High Crude oil with 500 ppm of 814UA18N at 10°C 169
Fig. 3.155 Rheogram of Bombay High Crude oil with 500 ppm of 814UA18N at 13°C 169
Fig. 3.156 Rheogram of Bombay High Crude oil with 500 ppm of 814UA18N at 16°C 170
Fig. 3.157 Rheogram of Bombay High Crude oil with 500 ppm of 814UA18N at 19°C 170
Fig. 3.158 Rheogram of Bombay High Crude oil with 500 ppm of 814UA18N at 22°C 171
Fig. 3.159 Rheogram of Bombay High Crude oil with 1000 ppm of 814UA18N at 10°C 171
Fig. 3.160 Rheogram of Bombay High Crude oil with 1000 ppm of 814UA18N at 13°C 172
Fig. 3.161 Rheogram of Bombay High Crude oil with 1000 ppm of 814UA18N at 16°C 172
Fig. 3.162 Rheogram of Bombay High Crude oil with 1000 ppm of 814UA18N at 19°C 173
Fig. 3.163 Rheogram of Bombay High Crude oil with 1000 ppm of 814UA18N at 22°C 173
Fig. 3.164 Rheogram of Bombay High Crude oil with 500 ppm of 814CA18N at 10°C 174
Fig. 3.165 Rheogram of Bombay High Crude oil with 500 ppm of 814CA18N at 13°C 174
Fig. 3.166 Rheogram of Bombay High Crude oil with 500 ppm of 814CA18N at 16°C 175
Fig. 3.167 Rheogram of Bombay High Crude oil with 500 ppm of 814CA18N at 19°C 175
Fig. 3.168 Rheogram of Bombay High Crude oil with 500 ppm of 814CA18N at 22°C 176
Fig. 3.169 Rheogram of Bombay High Crude oil with 1000 ppm of 814CA18N at 10°C 176
Fig. 3.170 Rheogram of Bombay High Crude oil with 1000 ppm of 814CA18N at 13°C 177
Fig. 3.171 Rheogram of Bombay High Crude oil with 1000 ppm of 814CA18N at 16°C 177
Fig. 3.172 Rheogram of Bombay High Crude oil with 1000 ppm of 814CA18N at 19°C 178
Fig. 3.173 Rheogram of Bombay High Crude oil with 1000 ppm of 814CA18N at 22°C 178
Fig. 3.174 Rheogram of Bombay High Crude oil with 500 ppm of 816CA18N at 10°C 179
Fig. 3.175 Rheogram of Bombay High Crude oil with 500 ppm of 816CA18N at 13°C 179
Fig. 3.176 Rheogram of Bombay High Crude oil with 500 ppm of 816CA18N at 16°C 180
Fig. 3.177 Rheogram of Bombay High Crude oil with 500 ppm of 816CA18N at 19°C 180
Fig. 3.178 Rheogram of Bombay High Crude oil with 500 ppm of 816CA18N at 22°C 181
Fig. 3.179 Rheogram of Bombay High Crude oil with 1000 ppm of 816CA18N at 10°C 181
Fig. 3.180 Rheogram of Bombay High Crude oil with 1000 ppm of 816CA18N at 13°C 182
Fig. 3.181 Rheogram of Bombay High Crude oil with 1000 ppm of 816CA18N at 19°C 182
Fig. 3.182 Rheogram of Bombay High Crude oil with 1000 ppm of 816CA18N at 22°C 183
Fig. 3.183 Rheogram of Bombay High Crude oil with 500 ppm of 814RA18N at 10°C 183
Fig. 3.184 Rheogram of Bombay High Crude oil with 500 ppm of 814RA18N at 13°C 184
Fig. 3.185 Rheogram of Bombay High Crude oil with 500 ppm of 814RA18N at 16°C 184
Fig. 3.186 Rheogram of Bombay High Crude oil with 500 ppm of 814RA18N at 19°C 185
Fig. 3.187 Rheogram of Bombay High Crude oil with 500 ppm of 814RA18N at 22°C 185
Fig. 3.188 Rheogram of Bombay High Crude oil with 1000 ppm of 814RA18N at 10°C 186
Fig. 3.189 Rheogram of Bombay High Crude oil with 1000 ppm of 814RA18N at 13°C 186
Fig. 3.190 Rheogram of Bombay High Crude oil with 1000 ppm of 814RA18N at 16°C 187
Fig. 3.191 Rheogram of Bombay High Crude oil with 1000 ppm of 814RA18N at 19°C 187
Fig. 3.192 Rheogram of Bombay High Crude oil with 1000 ppm of 814RA18N at 22°C 188
Fig. 3.193 Rheogram of Bombay High Crude oil with 500 ppm of 816RA18N at 10°C 188
Fig. 3.194 Rheogram of Bombay High Crude oil with 500 ppm of 816RA18N at 13°C 189
Fig. 3.195 Rheogram of Bombay High Crude oil with 500 ppm of 816RA18N at 16°C 189
Fig. 3.196 Rheogram of Bombay High Crude oil with 500 ppm of 816RA18N at 19°C 190
Fig. 3.197 Rheogram of Bombay High Crude oil with 500 ppm of 816RA18N at 22°C 190
Fig. 3.198 Rheogram of Bombay High Crude oil with 1000 ppm of 816RA18N at 10°C 191
Fig. 3.199 Rheogram of Bombay High Crude oil with 1000 ppm of 816RA18N at 13°C 191
Fig. 3.200 Rheogram of Bombay High Crude oil with 1000 ppm of 816RA18N at 16°C 192
Fig. 3.201 Rheogram of Bombay High Crude oil with 1000 ppm of 816RA18N at 19°C 192
Fig. 3.202 Rheogram of Bombay High Crude oil with 1000 ppm of 816RA18N at 22°C 193
Fig. 3.203 Rheogram of Bombay High Crude oil with 500 ppm of 814OA18N at 10°C 193
Fig. 3.204 Rheogram of Bombay High Crude oil with 500 ppm of 814OA18N at 13°C 194
Fig. 3.205 Rheogram of Bombay High Crude oil with 500 ppm of 814OA18N at 16°C 194
Fig. 3.206 Rheogram of Bombay High Crude oil with 500 ppm of 814OA18N at 19°C 195
Fig. 3.207 Rheogram of Bombay High Crude oil with 500 ppm of 814OA18N at 22°C 195
Fig. 3.208 Rheogram of Bombay High Crude oil with 1000 ppm of 814OA18N at 10°C 196
Fig. 3.209 Rheogram of Bombay High Crude oil with 1000 ppm of 814OA18N at 13°C 196
Fig. 3.210 Rheogram of Bombay High Crude oil with 1000 ppm of 814OA18N at 16°C 197
Fig. 3.211 Rheogram of Bombay High Crude oil with 1000 ppm of 814OA18N at 19°C 197
Fig. 3.212 Rheogram of Bombay High Crude oil with 1000 ppm of 814OA18N at 22°C 198
Fig. 3.213 Rheogram of Bombay High Crude oil with 500 ppm of 816OA18N at 10°C 198
Fig. 3.214 Rheogram of Bombay High Crude oil with 500 ppm of 816OA18N at 13°C 199
Fig. 3.215 Rheogram of Bombay High Crude oil with 500 ppm of 816OA18N at 16°C 199
Fig. 3.216 Rheogram of Bombay High Crude oil with 500 ppm of 816OA18N at 19°C 200
Fig. 3.217 Rheogram of Bombay High Crude oil with 500 ppm of 816OA18N at 22°C 200
Fig. 3.218 Rheogram of Bombay High Crude oil with 1000 ppm of 816OA18N at 10°C 201
Fig. 3.219 Rheogram of Bombay High Crude oil with 1000 ppm of 816OA18N at 13°C 201
Fig. 3.220 Rheogram of Bombay High Crude oil with 1000 ppm of 816OA18N at 16°C 202
Fig. 3.221 Rheogram of Bombay High Crude oil with 1000 ppm of 816OA18N at 19°C 202
Fig. 3.222 Rheogram of Bombay High Crude oil with 1000 ppm of 816OA18N at 22°C 203