TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xxv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxx</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>FRUIT AND ITS IMPORTANCE</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>MUSKMELON</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>NEED FOR PRESERVATION</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>DRYING METHODS</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>FOAM MAT DRYING</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>REVIEW OF LITERATURE</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>FOAMING AND FOAM CHARACTERISTICS</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>FOAM MAT DRYING</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>RESPONSE SURFACE METHODOLOGY</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>DRYING CHARACTERISTICSS</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>EFFECTIVE MOISTURE DIFFUSIVITY</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>THIN LAYER DRYING MODELS</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>ANALYSIS OF FOOD POWDERS</td>
<td>29</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>2.8</td>
<td>POWDER CHARACTERISATION</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>MODEL FOOD SYSTEMS</td>
<td>37</td>
</tr>
<tr>
<td>2.10</td>
<td>STATISTICAL ANALYSIS</td>
<td>39</td>
</tr>
<tr>
<td>2.11</td>
<td>SUMMARY OF LITERATURE REVIEW</td>
<td>40</td>
</tr>
<tr>
<td>2.12</td>
<td>PROBLEM IDENTIFICATION</td>
<td>41</td>
</tr>
<tr>
<td>2.13</td>
<td>OBJECTIVES</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>MATERIALS AND METHODS</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>SELECTION OF MUSKMELON</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>PROPERTEIS OF FRESH MUSKMELON</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Size and Shape</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>3.2.2 Percentage of pulp, peel and seeds</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>PREPARATION OF MUSKMELON PULP</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>3.3.1 Peeling and Deseeding</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>3.3.2 Pulping</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>FOAMING AND STABILIZING AGENTS</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>3.4.1 Egg Albumen (EA)</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>3.4.2 Soy Protein Isolate (SPI)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>3.4.3 Whey Protein Concentrate (WPC)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>3.4.4 Carboxy methylcellulose (CMC)</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>FOAMING OF MUSKMELON PULP</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>FOAM PROPERTIES</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>3.6.1 Foam Density (FD)</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>3.6.2 Foam Expansion (FE)</td>
<td>52</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Foam Drainage Volume (FDV)</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>DESIGN OF EXPERIMENTS</td>
<td>53</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Experimental design for foaming of muskmelon pulp</td>
<td>53</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Optimization of Variables</td>
<td>55</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Experimental design for drying of muskmelon foam</td>
<td>55</td>
</tr>
<tr>
<td>3.8</td>
<td>DRYING OF MUSKMELON FOAM</td>
<td>56</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Tray Dryer</td>
<td>56</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Drying of muskmelon foam</td>
<td>58</td>
</tr>
<tr>
<td>3.9</td>
<td>DRYING PARAMETERS</td>
<td>58</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Drying rate</td>
<td>59</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Mositure ratio</td>
<td>59</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Modeling of drying curves</td>
<td>60</td>
</tr>
<tr>
<td>3.9.4</td>
<td>Effective Mositure Diffusivity and Activation Energy</td>
<td>61</td>
</tr>
<tr>
<td>3.10</td>
<td>PHYSICO-CHEMICAL PROPERTIES OF MUSKMELON POWDER</td>
<td>63</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Moisture Content</td>
<td>63</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Water activity</td>
<td>64</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Colour</td>
<td>65</td>
</tr>
<tr>
<td>3.10.4</td>
<td>Bulk density and Tap density</td>
<td>67</td>
</tr>
<tr>
<td>3.10.5</td>
<td>Hausner Ratio (HR) and Carr Index (CI)</td>
<td>67</td>
</tr>
<tr>
<td>3.10.6</td>
<td>Water solubility index</td>
<td>69</td>
</tr>
<tr>
<td>3.10.7</td>
<td>Hygroscopicity</td>
<td>69</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>3.10.8</td>
<td>Ascorbic acid</td>
<td>70</td>
</tr>
<tr>
<td>3.10.9</td>
<td>Beta Carotene</td>
<td>71</td>
</tr>
<tr>
<td>3.10.10</td>
<td>Fourier Transform Infrared Spectroscopy (FTIR) Analysis</td>
<td>72</td>
</tr>
<tr>
<td>3.10.11</td>
<td>Microstructure Analysis</td>
<td>74</td>
</tr>
<tr>
<td>3.11</td>
<td>APPLICATION OF MUSKMELON POWDER IN MODEL FOOD SYSTEMS</td>
<td>75</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Preparation of Ice cream</td>
<td>75</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Preparation of Muffins</td>
<td>76</td>
</tr>
<tr>
<td>3.11.3</td>
<td>Sensory Evaluation</td>
<td>77</td>
</tr>
<tr>
<td>3.12</td>
<td>STATISTICAL ANALYSIS</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>RESULTS AND DISCUSSION</td>
<td>80</td>
</tr>
<tr>
<td>4.1</td>
<td>PROPERTIES OF FRESH MUSKMELON</td>
<td>80</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Physical properties of muskmelon</td>
<td>80</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Biochemical properties of muskmelon pulp</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>FOAMING OF MUSKMELON PULP</td>
<td>82</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Egg Albumen as Foaming agent</td>
<td>83</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Effects of Egg Albumen, Carboxy Methyl Cellulose and Whipping Time on</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Foam Density</td>
<td></td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Effects of Egg Albumen, Carboxy Methyl Cellulose and Whipping Time on Foam Expansion</td>
<td>91</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Effects of Egg Albumen, Carboxy Methyl Cellulose and Whipping Time on Foam Drainage Volume</td>
<td>96</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Soy Protein Isolate as Foaming Agent</td>
<td>101</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Effects of Soy Protein Isolate, Carboxy Methyl Cellulose and Whipping Time on Foam Density</td>
<td>103</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Effects of Soy Protein Isolate, Carboxy Methyl Cellulose and Whipping Time on Foam Expansion</td>
<td>109</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>Effects of Soy Protein Isolate, Carboxy Methyl Cellulose and Whipping Time on Foam Drainage Volume</td>
<td>114</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Whey Protein Concentrate as foaming agent</td>
<td>118</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Effects of Whey Protein Concentrate, Carboxy Methyl Cellulose and Whipping Time on Foam Density</td>
<td>121</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Effects of Whey Protein Concentrate, Carboxy Methyl Cellulose and Whipping Time on Foam Expansion</td>
<td>126</td>
</tr>
<tr>
<td>4.2.3.3</td>
<td>Effects of Whey Protein Concentrate, carboxy methylcellulose and Whipping Time on Foam Drainage Volume</td>
<td>131</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Optimization, Validation and Comparison</td>
<td>136</td>
</tr>
<tr>
<td>4.3</td>
<td>DRYING OF MUSKMELON PULP</td>
<td>139</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Drying characteristics of muskmelon pulp</td>
<td>139</td>
</tr>
<tr>
<td>4.3.1.1</td>
<td>Drying characteristics of fresh unfoamed muskmelon pulp</td>
<td>139</td>
</tr>
<tr>
<td>4.3.1.2</td>
<td>Drying characteristics of Egg Albumen treated muskmelon pulp</td>
<td>141</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.3.1.3</td>
<td>Drying characteristics of Soy Protein Isolate treated muskmelon pulp</td>
<td>143</td>
</tr>
<tr>
<td>4.3.1.4</td>
<td>Drying characteristics of Whey Protein Concentrate treated muskmelon pulp</td>
<td>144</td>
</tr>
<tr>
<td>4.3.1.5</td>
<td>Comparison of drying characteristics</td>
<td>146</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Mathematical modeling of thin layer drying</td>
<td>148</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Effective moisture diffusivity (D_{eff}) and Activation Energy</td>
<td>149</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Effect of foaming on moisture diffusivity</td>
<td>149</td>
</tr>
<tr>
<td>4.3.3.2</td>
<td>Effect on drying temperature on moisture diffusivity</td>
<td>152</td>
</tr>
<tr>
<td>4.3.3.3</td>
<td>Activation Energy (E_a)</td>
<td>152</td>
</tr>
<tr>
<td>4.4</td>
<td>EFFECT OF FOAMING AND DRYING TEMPERATURE ON PHYSICO-CHEMICAL PROPERTIES OF MUSKMELON POWDER</td>
<td>154</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Water Activity (a_w)</td>
<td>154</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Colour</td>
<td>156</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Bulk density and Tap density</td>
<td>160</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Hausner’s ratio and Carr index</td>
<td>162</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Water Solubility Index</td>
<td>164</td>
</tr>
<tr>
<td>4.4.6</td>
<td>Hygroscopicity</td>
<td>166</td>
</tr>
<tr>
<td>4.4.7</td>
<td>Ascorbic acid</td>
<td>168</td>
</tr>
<tr>
<td>4.4.8</td>
<td>Beta carotene</td>
<td>170</td>
</tr>
<tr>
<td>4.4.9</td>
<td>Infrared Analysis</td>
<td>171</td>
</tr>
<tr>
<td>4.4.10</td>
<td>Microstructure Analysis</td>
<td>174</td>
</tr>
<tr>
<td>4.5</td>
<td>APPLICATION OF MUSKMELON POWDER IN MODEL FOOD SYSTEMS</td>
<td>176</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Ice cream</td>
<td>176</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Muffins</td>
<td>178</td>
</tr>
<tr>
<td>5</td>
<td>SUMMARY AND CONCLUSION</td>
<td>180</td>
</tr>
<tr>
<td>5.1</td>
<td>COMPARISON OF FOAMING RESULTS</td>
<td>180</td>
</tr>
<tr>
<td>5.2</td>
<td>COMPARISON OF DRYING RESULTS</td>
<td>182</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Comparison of thin layer drying models</td>
<td>182</td>
</tr>
<tr>
<td>5.3</td>
<td>COMPARISON OF POWDER PROPERTIES</td>
<td>183</td>
</tr>
<tr>
<td>5.4</td>
<td>SCOPE FOR FUTURE STUDY</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>APPENDIX 1</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>APPENDIX 2</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>APPENDIX 3</td>
<td>217</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td></td>
<td>238</td>
</tr>
</tbody>
</table>