CHAPTER 2
DOUBLE SEQUENCE SPACES DEFINED BY A SEQUENCE OF ORLICZ FUNCTIONS

This chapter is devoted to the study of some double sequence spaces defined by a sequence of Orlicz functions. The inspiration to write this chapter came after study the following papers ([Har 17], [Mor 91], [Tri 03], [MuE 03], [Mur 04], [AlB 05], [BaS 09]). The chapter is divided into three sections. The section I deals with the study of some double difference sequence spaces $c^2(\Delta^m, M, u, p, q, s)$, $c_0^2(\Delta^m, M, u, p, q, s)$ and $l^2_\infty(\Delta^m, M, u, p, q, s)$. We study some topological properties and prove some inclusion relation between these sequence spaces. It is very interesting in this section if the seminorms $q_1 \equiv q_2$ (equivalent), then $Z^2(\Delta^m, M, u, p, q_1, s) = Z^2(\Delta^m, M, u, p, q_2, s)$ for $Z^2 = c^2, c_0^2$ and l^2_∞. In second section an attempt has been made to study the sequence spaces $\Lambda^2_M(\Delta^m, u, p, q)$ and $\Gamma^2_M(\Delta^m, u, p, q)$. The main purpose of section second of this chapter is to study the property of linearity, paranormed and various inclusion relations. The third section of this chapter is a study of double chi and double analytic sequences $\chi^2_M[\hat{c}, \Delta^m, u, p, q]$ and $\Lambda^2_M[\hat{c}, \Delta^m, u, p, q]$. It is shown that they are linear as well as paranormed spaces. A necessary and sufficient condition for the inclusion relations is given in the end of this section. The following inequality will be used throughout this chapter. Let $p = (p_{k,l})$ be a sequence of positive real numbers with $0 \leq p_{k,l} \leq \sup p_{k,l} = H$, $K = \max(1, 2^{H-1})$ then

$$|a_{k,l} + b_{k,l}|^{p_{k,l}} \leq K \{ |a_{k,l}|^{p_{k,l}} + |b_{k,l}|^{p_{k,l}} \}$$ \hspace{1cm} (2.1)

for all k, l and $a_{k,l}, b_{k,l} \in \mathbb{C}$. Also $|a|^{p_{k,l}} \leq \max(1, |a|^{H})$ for all $a \in \mathbb{C}$.

2.1 Difference double sequence spaces

A study of topological properties and inclusion relation between difference sequence spaces $Z^2(\Delta^m, M, u, p, q, s)$ for $Z^2 = c^2, c_0^2$ and l^2_∞ defined by a sequence of Orlicz function has been initiated in this section.

Suppose $M = (M_{k,l})$ is a sequence of Orlicz functions, $p = (p_{k,l})$ be a bounded sequence of positive real numbers and $u = (u_{k,l})$ be a sequence of strictly positive real numbers. Also let X be a seminormed space over the field of complex numbers \mathbb{C} with the seminorm q. We define the following classes of sequences in this section:

$$c^2(\Delta^m, M, u, p, q, s) = \left\{ x = (x_{k,l}) \in w^2 : P - \lim_{k,l}(kl)^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m x_{k,l}}{\rho} - L \right) \right) \right]^{p_{k,l}} = 0, \text{ for some } L, \rho > 0 \text{ and } s \geq 0 \right\},$$
\[c_0^2(\Delta_n^m, \mathcal{M}, u, p, q, s) = \left\{ x = (x_{k,l}) \in w^2 : P - \lim_{k,l} (\Delta_n^m x_{k,l})^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right) \right]^{p_{k,l}} = 0, \text{ for some } \rho > 0 \text{ and } s \geq 0 \right\} \]

and

\[l_\infty^2(\Delta_n^m, \mathcal{M}, u, p, q, s) = \left\{ x = (x_{k,l}) \in w^2 : \sup_{k,l} (\Delta_n^m x_{k,l})^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right) \right]^{p_{k,l}} < \infty, \text{ for some } \rho > 0 \text{ and } s \geq 0 \right\}. \]

If we take \(\mathcal{M}(x) = x \), we get

\[c^2(\Delta_n^m, u, p, q, s) = \left\{ x = (x_{k,l}) \in w^2 : P - \lim_{k,l} (\Delta_n^m x_{k,l})^{-s} u_{k,l} \left[q \left(\frac{\Delta_n^m x_{k,l} - L}{\rho} \right) \right]^{p_{k,l}} = 0, \text{ for some } L, \rho > 0 \text{ and } s \geq 0 \right\}, \]

\[c_0^2(\Delta_n^m, u, p, q, s) = \left\{ x = (x_{k,l}) \in w^2 : P - \lim_{k,l} (\Delta_n^m x_{k,l})^{-s} u_{k,l} \left[q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right]^{p_{k,l}} = 0, \text{ for some } \rho > 0 \text{ and } s \geq 0 \right\} \]

and

\[l_\infty^2(\Delta_n^m, u, p, q, s) = \left\{ x = (x_{k,l}) \in w^2 : \sup_{k,l} (\Delta_n^m x_{k,l})^{-s} u_{k,l} \left[q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right]^{p_{k,l}} < \infty, \text{ for some } \rho > 0 \text{ and } s \geq 0 \right\}. \]

If we take \(p = (p_{k,l}) = 1 \), we get

\[c^2(\Delta_n^m, \mathcal{M}, u, q, s) = \left\{ x = (x_{k,l}) \in w^2 : P - \lim_{k,l} (\Delta_n^m x_{k,l})^{-s} u_{k,l} \left[q \left(\frac{\Delta_n^m x_{k,l} - L}{\rho} \right) \right] = 0, \text{ for some } L, \rho > 0 \text{ and } s \geq 0 \right\}, \]

\[c_0^2(\Delta_n^m, \mathcal{M}, u, q, s) = \left\{ x = (x_{k,l}) \in w^2 : P - \lim_{k,l} (\Delta_n^m x_{k,l})^{-s} u_{k,l} \left[q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right] = 0, \text{ for some } \rho > 0 \text{ and } s \geq 0 \right\} \]

and

\[l_\infty^2(\Delta_n^m, \mathcal{M}, u, q, s) = \left\{ x = (x_{k,l}) \in w^2 : \sup_{k,l} (\Delta_n^m x_{k,l})^{-s} u_{k,l} \left[q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right] < \infty, \text{ for some } \rho > 0 \text{ and } s \geq 0 \right\}. \]

If we take \(m = n = 0 \) and \(q(x) = |x| \), then we get new double sequence spaces as follows :

\[c^2(\mathcal{M}, u, p, s) = \left\{ x = (x_{k,l}) \in w^2 : P - \lim_{k,l} (\Delta_n^m x_{k,l})^{-s} u_{k,l} \left[q \left(\frac{|x_{k,l} - L|}{\rho} \right) \right]^{p_{k,l}} = 0, \right\} \]
for some \(L, \rho > 0 \) and \(s \geq 0 \),

\[
\ell_0^2(\mathcal{M}, u, p, s) = \left\{ x = (x_{k,l}) \in w^2 : P - \lim_{k,l} (kl)^{-s} u_{k,l} \left[M_{k,l} \left(\frac{|x_{k,l}|}{\rho} \right) \right]^{p_{k,l}} = 0, \right. \\
\left. \quad \text{for some } \rho > 0 \text{ and } s \geq 0 \right\}
\]

and

\[
\ell_\infty^2(\Delta, \mathcal{M}, u, p, q, s) = \left\{ x = (x_{k,l}) \in w^2 : \sup_{k,l} (kl)^{-s} u_{k,l} \left[M_{k,l} \left(\frac{|x_{k,l}|}{\rho} \right) \right]^{p_{k,l}} < \infty, \right. \\
\left. \quad \text{for some } \rho > 0 \text{ and } s \geq 0 \right\}.
\]

If we take \(m = n = 1 \) and \(q(x) = |x| \), then we get new double sequence spaces as follows:

\[
c_0^2(\Delta, \mathcal{M}, u, p, q, s) = \left\{ x = (x_{k,l}) \in w^2 : P - \lim_{k,l} (kl)^{-s} u_{k,l} \left[M_{k,l} \left(\frac{|x_{k,l}|}{\rho} \right) \right]^{p_{k,l}} = 0, \right. \\
\left. \quad \text{for some } L, \rho > 0 \text{ and } s \geq 0 \right\},
\]

\[
c_0^2(\Delta, \mathcal{M}, u, p, q, s) = \left\{ x = (x_{k,l}) \in w^2 : P - \lim_{k,l} (kl)^{-s} u_{k,l} \left[M_{k,l} \left(\frac{|x_{k,l}|}{\rho} \right) \right]^{p_{k,l}} = 0, \right. \\
\left. \quad \text{for some } \rho > 0 \text{ and } s \geq 0 \right\},
\]

and

\[
\ell_\infty^2(\Delta, \mathcal{M}, u, p, q, s) = \left\{ x = (x_{k,l}) \in w^2 : \sup_{k,l} (kl)^{-s} u_{k,l} \left[M_{k,l} \left(\frac{|x_{k,l}|}{\rho} \right) \right]^{p_{k,l}} < \infty, \right. \\
\left. \quad \text{for some } \rho > 0 \text{ and } s \geq 0 \right\}.
\]

Theorem 2.1.1 Let \(\mathcal{M} = (M_{k,l}) \) be a sequence of Orlicz functions, \(p = (p_{k,l}) \) be a bounded sequence of positive real numbers and \(u = (u_{k,l}) \) be a sequence of strictly positive real numbers. Then the classes of sequences \(c_0^2(\Delta^m_n, \mathcal{M}, u, p, q, s) \), \(c^2(\Delta^m_n, \mathcal{M}, u, p, q, s) \) and \(\ell_\infty^2(\Delta^m_n, \mathcal{M}, u, p, q, s) \) are linear spaces over the field of complex numbers \(\mathbb{C} \).

Proof. Let \(x = (x_{k,l}), y = (y_{k,l}) \in c_0^2(\Delta^m_n, \mathcal{M}, u, p, q, s) \) and \(\alpha, \beta \in \mathbb{C} \). Then there exist positive numbers \(\rho_1 \) and \(\rho_2 \) such that

\[
\lim_{k,l} (kl)^{-s} u_{k,l} \left[M_{k,l} \left(\frac{|x_{k,l}|}{\rho_1} \right) \right]^{p_{k,l}} = 0
\]

and

\[
\lim_{k,l} (kl)^{-s} u_{k,l} \left[M_{k,l} \left(\frac{|y_{k,l}|}{\rho_2} \right) \right]^{p_{k,l}} = 0.
\]
Let $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since $\mathcal{M} = (M_{k,l})$ is non-decreasing, convex function and so by using inequality (2.1), we have

$$\lim_{k,l}(kl)^{-s}u_{k,l}\left[M_{k,l}\left(q\left(\frac{\Delta_n^m(\alpha x_{k,l} + \beta y_{k,l})}{\rho_3}\right)\right)^{p_{k,l}}\right]$$

$$= \lim_{k,l}(kl)^{-s}u_{k,l}\left[M_{k,l}\left(q\left(\frac{\Delta_n^m x_{k,l}}{\rho_1}\right)\right)\right]^{p_{k,l}}$$

$$\leq K \lim_{k,l} \frac{1}{2p_{k,l}}(kl)^{-s}u_{k,l}\left[M_{k,l}\left(q\left(\frac{\Delta_n^m y_{k,l}}{\rho_2}\right)\right)\right]^{p_{k,l}}$$

$$\leq K \lim_{k,l}(kl)^{-s}u_{k,l}\left[M_{k,l}\left(q\left(\frac{\Delta_n^m x_{k,l}}{\rho_1}\right)\right)\right]^{p_{k,l}}$$

$$+ K \lim_{k,l}(kl)^{-s}u_{k,l}\left[M_{k,l}\left(q\left(\frac{\Delta_n^m y_{k,l}}{\rho_2}\right)\right)\right]^{p_{k,l}}$$

$$= 0.$$

So, $\alpha x + \beta y \in c_0^2(\Delta_n^m, \mathcal{M}, u, p, q, s)$. Hence $c_0^2(\Delta_n^m, \mathcal{M}, u, p, q, s)$ is a linear space. Similarly, we can prove that $c^2(\Delta_n^m, \mathcal{M}, u, p, q, s)$ and $l^2_\infty(\Delta_n^m, \mathcal{M}, u, p, q, s)$ are linear spaces.

Theorem 2.1.2 Let $\mathcal{M} = (M_{k,l})$ be a sequence of Orlicz functions, $p = (p_{k,l})$ be a bounded sequence of positive real numbers and $u = (u_{k,l})$ be a sequence of strictly positive real numbers. For $Z^2 = l^2_\infty$, c^2 and c_0^2, the spaces $Z^2(\Delta_n^m, \mathcal{M}, u, p, q, s)$ are paranormed spaces, paranormed by

$$g(x) = \sum_{k,l=1}^{mn} q(x_{k,l}) + \inf \left\{ \rho^{p_{k,l}} : \sup_{k,l}(kl)^{-s}u_{k,l}M_{k,l} \left(q\left(\frac{\Delta_n^m x_{k,l}}{\rho}\right)\right) \leq 1 \right\},$$

where $H = \max(1, \sup_{k,l} p_{k,l})$.

Proof. Clearly $g(-x) = g(x)$, $g(0) = 0$. Let $(x_{k,l})$ and $(y_{k,l})$ be any two sequences belong to any one of the spaces $Z^2(\Delta_n^m, \mathcal{M}, u, p, q, s)$, for $Z^2 = c_0^2$, c^2 and l^2_∞. Then, we get $\rho_1, \rho_2 > 0$ such that

$$\sup_{k,l}(kl)^{-s}u_{k,l}M_{k,l} \left(q\left(\frac{\Delta_n^m x_{k,l}}{\rho_1}\right)\right) \leq 1$$

and

$$\sup_{k,l}(kl)^{-s}u_{k,l}M_{k,l} \left(q\left(\frac{\Delta_n^m y_{k,l}}{\rho_2}\right)\right) \leq 1.$$
Let \(\rho = \rho_1 + \rho_2 \). Then by convexity of \(\mathcal{M} = (M_{k,l}) \), we have

\[
\sup_{k,l} (kl)^{-s} u_{k,l} M_{k,l} \left(q \left(\frac{\Delta_n^m(x_{k,l} + y_{k,l})}{\rho} \right) \right)
\]

\[
\leq \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \sup_{k,l} (kl)^{-s} u_{k,l} M_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{\rho_1} \right) \right) + \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \sup_{k,l} (kl)^{-s} u_{k,l} M_{k,l} \left(q \left(\frac{\Delta_n^m y_{k,l}}{\rho_2} \right) \right)
\]

\[
\leq 1.
\]

Hence we have,

\[
g(x + y) = \sum_{k,l=1}^{mn} q(x_{k,l} + y_{k,l}) + \inf \left\{ \rho \frac{p_{k,l}}{p_{k,l}} : \sup_{k,l} (kl)^{-s} u_{k,l} M_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right) \leq 1 \right\}
\]

\[
\leq \sum_{k,l=1}^{mn} q(x_{k,l}) + \inf \left\{ \rho_1 \frac{p_{k,l}}{p_{k,l}} : \sup_{k,l} (kl)^{-s} u_{k,l} M_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{\rho_1} \right) \right) \leq 1 \right\}
\]

\[
+ \sum_{k,l=1}^{mn} q(y_{k,l}) + \inf \left\{ \rho_2 \frac{p_{k,l}}{p_{k,l}} : \sup_{k,l} (kl)^{-s} u_{k,l} M_{k,l} \left(q \left(\frac{\Delta_n^m y_{k,l}}{\rho_2} \right) \right) \leq 1 \right\}.
\]

This implies that

\[
g(x + y) \leq g(x) + g(y).
\]

The continuity of the scalar multiplication follows from the following inequality

\[
g(\mu x) = \sum_{k,l=1}^{mn} q(\mu x_{k,l}) + \inf \left\{ \rho \frac{p_{k,l}}{p_{k,l}} : \sup_{k,l} (kl)^{-s} u_{k,l} M_{k,l} \left(q \left(\frac{\Delta_n^m \mu x_{k,l}}{\rho} \right) \right) \leq 1 \right\}
\]

\[
= |\mu| \sum_{k,l=1}^{mn} q(x_{k,l}) + \inf \left\{ (t|\mu|) \frac{p_{k,l}}{p_{k,l}} : \sup_{k,l} (kl)^{-s} u_{k,l} M_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{t} \right) \right) \leq 1 \right\},
\]

where \(t = \frac{\rho}{|\mu|} \). Hence the space \(Z^2(\Delta_n^m, \mathcal{M}, u, p, q, s) \), for \(Z^2 = c_0^2, c_2 \) and \(l_\infty^2 \) is a paranormed space, paranormed by \(g \).

Theorem 2.1.3 Let \(\mathcal{M} = (M_{k,l}) \) be a sequence of Orlicz functions, \(p = (p_{k,l}) \) be a bounded sequence of positive real numbers and \(u = (u_{k,l}) \) be a sequence of strictly positive real numbers. For \(Z^2 = l_\infty^2, c_2 \) and \(c_0^2 \), the spaces \(Z^2(\Delta_n^m, \mathcal{M}, u, p, q, s) \) are complete paranormed spaces, paranormed by

\[
g(x) = \sum_{k,l=1}^{mn} q(x_{k,l}) + \inf \left\{ \rho \frac{p_{k,l}}{p_{k,l}} : \sup_{k,l} (kl)^{-s} u_{k,l} M_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right) \leq 1 \right\},
\]
where $H = \max(1, \sup_{k,l} p_{k,l})$.

Proof. We prove the result for the space $l^2_\infty(\Delta_n^m, \mathcal{M}, u, p, q, s)$. Let $(x_{k,l}^i)$ be any Cauchy sequence in $l^2_\infty(\Delta_n^m, \mathcal{M}, u, p, q, s)$. Let $\epsilon > 0$ be given and for $t > 0$, choose x_0 be fixed such that $u_{k,l}M_{k,l} \left(\frac{tx_0}{2}\right) \geq 1$, then there exists a positive integer $n_0 \in \mathbb{N}$ such that $g(x_{k,l}^i - x_{k,l}^j) < \frac{\epsilon}{x_0 t}$, for all $i, j \geq n_0$. Using the definition of paranorm, we get

$$
\sum_{k,l=1}^{mn} q(x_{k,l}^i - x_{k,l}^j) + \inf \left\{ \rho \frac{p_{k,l}}{\overline{\lambda}_l} : \sup_{k,l} (kl)^{-s} u_{k,l}M_{k,l} \left(q\left(\frac{\Delta_n^m(x_{k,l}^i - x_{k,l}^j)}{\rho} \right) \right) \leq 1 \right\} < \frac{\epsilon}{x_0 t},
$$

for all $i, j \geq n_0$. \hfill (2.1.1)

Hence we have,

$$
\sum_{k,l=1}^{mn} q(x_{k,l}^i - x_{k,l}^j) < \epsilon, \text{ for all } i, j \geq n_0.
$$

This implies that

$$
q(x_{k,l}^i - x_{k,l}^j) < \epsilon, \text{ for all } i, j \geq n_0 \text{ and } 1 \leq k, l \leq mn.
$$

Thus $(x_{k,l}^i)$ is a Cauchy sequence in \mathbb{C} for $k, l = 1, 2, ..., mn$. Hence $(x_{k,l}^i)$ is convergent in \mathbb{C} for $k, l = 1, 2, ..., mn$. Let \(\lim_{i \to \infty} x_{k,l}^i = x_{k,l} \), say for $k, l = 1, 2, ..., mn$. \hfill (2.1.2)

Again from equation (2.1.1) we have,

$$
\inf \left\{ \rho \frac{p_{k,l}}{\overline{\lambda}_l} : \sup_{k,l} (kl)^{-s} u_{k,l}M_{k,l} \left(q\left(\frac{\Delta_n^m(x_{k,l}^i - x_{k,l}^j)}{\rho} \right) \right) \leq 1 \right\} < \epsilon, \text{ for all } i, j \geq n_0.
$$

Hence we get

$$
\sup_{k,l} (kl)^{-s} u_{k,l}M_{k,l} \left(q\left(\frac{\Delta_n^m(x_{k,l}^i - x_{k,l}^j)}{\rho} \right) \right) \leq 1, \text{ for all } i, j \geq n_0.
$$

It follows that $(kl)^{-s} u_{k,l}M_{k,l} \left(q\left(\frac{\Delta_n^m(x_{k,l}^i - x_{k,l}^j)}{g(x^i - x^j)} \right) \right) \leq 1$, for each $k, l \geq 1$ and for all $i, j \geq n_0$. For $t > 0$ with $(kl)^{-s} u_{k,l}M_{k,l} \left(\frac{tx_0}{2} \right) \geq 1$, we have

$$
(kl)^{-s} u_{k,l}M_{k,l} \left(q\left(\frac{\Delta_n^m(x_{k,l}^i - x_{k,l}^j)}{g(x^i - x^j)} \right) \right) \leq (kl)^{-s} u_{k,l}M_{k,l} \left(\frac{tx_0}{2} \right).
$$

This implies that

$$q(\Delta_n^m x_{k,l}^i - \Delta_n^m x_{k,l}^j) < \frac{tx_0}{2} \frac{\epsilon}{tx_0} = \frac{\epsilon}{2}.
$$

Hence $q(\Delta_n^m x_{k,l}^i)$ is a Cauchy sequence in \mathbb{C} for all $k, l \in \mathbb{N}$. This implies that $q(\Delta_n^m x_{k,l}^i)$ is convergent in \mathbb{C} for all $k, l \in \mathbb{N}$. Let \(\lim_{i \to \infty} q(\Delta_n^m x_{k,l}^i) = y_{k,l} \) for each
Let $k, l \in \mathbb{N}$. Then for $k, l = 1$, we have
\[
\lim_{i \to \infty} q(\Delta^m_n x^{i}_{k,l}) = \lim_{i \to \infty} \sum_{v=0}^{m} (-1)^v \binom{m}{v} x^{i}_{1+nv,1+mv} = y_{1,1}.
\] (2.1.3)

We have by equations (2.1.2) and (2.1.3), $\lim_{i \to \infty} x^{i}_{mn+1} = x_{mn+1}$, exists. Proceeding in this way inductively, we have $\lim_{i \to \infty} x^{i}_{k,l} = x_{k,l}$ exists for each $k, l \in \mathbb{N}$. Now we have for all $i, j \geq n_0$,
\[
\sum_{k,l=1}^{mn} q(x^{i}_{k,l} - x^{j}_{k,l}) + \sup_{k,l} \rho \cdot u_{k,l} M_{k,l} \left(q \left(\frac{\Delta^m_n (x^{i}_{k,l} - x^{j}_{k,l})}{\rho} \right) \right) \leq 1 < \epsilon.
\]

This implies that
\[
\lim_{j \to \infty} \left\{ \sum_{k,l=1}^{mn} q(x^{i}_{k,l} - x^{j}_{k,l}) + \sup_{k,l} \rho \cdot u_{k,l} M_{k,l} \left(q \left(\frac{\Delta^m_n (x^{i}_{k,l} - x^{j}_{k,l})}{\rho} \right) \right) \leq 1 \right\} < \epsilon,
\]
for all $i \geq n_0$. Using the continuity of $(M_{k,l})$, we have
\[
\sum_{k,l=1}^{mn} q(x^{i}_{k,l} - x^{j}_{k,l}) + \sup_{k,l} \rho \cdot u_{k,l} M_{k,l} \left(q \left(\frac{\Delta^m_n (x^{i}_{k,l} - x^{j}_{k,l})}{\rho} \right) \right) \leq 1 < \epsilon,
\]
for all $i \geq n_0$. It follows that $(x^i - x) \in l_2^2(\Delta^m_n, \mathcal{M}, u, p, q, s)$.

Since $x^i \in l_2^2(\Delta^m_n, \mathcal{M}, u, p, q, s)$ and $l_2^2(\Delta^m_n, \mathcal{M}, u, p, q, s)$ is a linear space, we have $x = x^i - (x^i - x) \in l_2^2(\Delta^m_n, \mathcal{M}, u, p, q, s)$. This completes the proof. Similarly, we can prove that $c^2(\Delta^m_n, \mathcal{M}, u, p, q, s)$ and $c^2_0(\Delta^m_n, \mathcal{M}, u, p, q, s)$ are complete paranormed spaces in view of the above proof.

Theorem 2.1.4 If $m \geq 1$, then for all $0 < i \leq m$, $Z^2(\Delta^i_n, \mathcal{M}, u, p, q, s) \subset Z^2(\Delta^m_n, \mathcal{M}, u, p, q, s)$, where $Z^2 = c^2, c^2_0$ and l_2^2.

Proof. We shall prove it for only $c^2_0(\Delta^m_n, \mathcal{M}, u, p, q, s)$. Let $x = (x_{k,l}) \in c^2_0(\Delta^m_n, \mathcal{M}, u, p, q, s)$. Then
\[
P - \lim_{k,l} (kl)^{-s} u_{k,l} M_{k,l} \left(q \left(\frac{\Delta^m_n x_{k,l}}{\rho} \right) \right) = 0, \text{ for some } \rho > 0 \text{ and } s \geq 0.
\] (2.1.4)

Then from equation (2.1.4) we have
\[
P - \lim_{k,l} (kl)^{-s} u_{k,l} M_{k,l} \left(q \left(\frac{\Delta^m_n x_{k,l}}{\rho} \right) \right) = 0,
\]
and
\[
P - \lim_{k,l} (kl)^{-s} u_{k,l} M_{k,l} \left(q \left(\frac{\Delta^m_n x_{k,l}}{\rho} \right) \right) = 0.
\]
Now for
\[\Delta^m_n x = (\Delta^m_n x_{k,l}) = (\Delta^{m-1}_n x_{k,l} - \Delta^{m-1}_n x_{k,l+1} - \Delta^{m-1}_n x_{k+1,l} + \Delta^{m-1}_n x_{k+1,l+1}), \]
we have
\[
(kl)^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^{m-1}_n x_{k,l}}{\rho} \right) \right) \right]^{p_{k,l}} \leq (kl)^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^{m-1}_n x_{k,l}}{\rho} \right) + q \left(\frac{\Delta^{m-1}_n x_{k,l+1}}{\rho} \right) \right) \right]^{p_{k,l}}
+ q \left(\frac{\Delta^{m-1}_n x_{k+l+1}}{\rho} \right) \left[M_{k,l} \left(q \left(\frac{\Delta^{m-1}_n x_{k+l+1}}{\rho} \right) \right) \right]^{p_{k,l}}
\leq K (kl)^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^{m-1}_n x_{k,l}}{\rho} \right) \right) \right]^{p_{k,l}}
+ [M \left(q \left(\frac{\Delta^{m-1}_n x_{k+l+1}}{\rho} \right) \right)]^{p_{k,l}}
+ [M_{k,l} \left(q \left(\frac{\Delta^{m-1}_n x_{k+l+1}}{\rho} \right) \right)]^{p_{k,l}}
\leq K (kl)^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^{m-1}_n x_{k,l}}{\rho} \right) \right) \right]^{p_{k,l}}
+ K (kl)^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^{m-1}_n x_{k+l+1}}{\rho} \right) \right) \right]^{p_{k,l+1}}
+ K (kl)^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^{m-1}_n x_{k+l+1}}{\rho} \right) \right) \right]^{p_{k,l+1}}
+ K (kl)^{-s} u_{k,l} \left[(kl)^{-s} M_{k,l} \left(q \left(\frac{\Delta^{m-1}_n x_{k+l+1}}{\rho} \right) \right) \right]^{p_{k,l+1}}.
\]

From this it follows that \(x = (x_{k,l}) \in c^2_0(\Delta^m_n, \mathcal{M}, u, p, q, s) \) and hence

\[c^2_0(\Delta^{m-1}_n, \mathcal{M}, u, p, q, s) \subset c^2_0(\Delta^m_n, \mathcal{M}, u, p, q, s). \]

On applying the principle of induction, it follows that

\[c^2_0(\Delta^i, \mathcal{M}, u, p, q, s) \subset c^2_0(\Delta^m_n, \mathcal{M}, u, p, q, s) \] for \(i = 0, 1, 2, \ldots, m - 1. \)

Similarly, we can prove the other cases.

Theorem 2.1.5 (i) If \(0 < \inf_{k,l} p_{k,l} \leq p_{k,l} < 1 \), then

\[Z^2(\Delta^m_n, \mathcal{M}, u, p, q, s) \subset Z^2(\Delta^m_n, \mathcal{M}, u, q, s). \]

(ii) If \(1 < p_{k,l} \leq \sup_{k,l} p_{k,l} < \infty \), then

\[Z^2(\Delta^m_n, \mathcal{M}, u, q, s) \subset Z^2(\Delta^m_n, \mathcal{M}, u, p, q, s), \]

where \(Z^2 = c^2, c^2_0 \) and \(l^2_\infty \).
Let $x = (x_{k,l}) \in l^2_{\infty}(\Delta^m_n, \mathcal{M}, u, p, q, s)$. Since $0 < \inf p_{k,l} \leq 1$, we have
\[
\sup_{k,l} (kl)^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right) \right] \leq \sup_{k,l} (kl)^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right) \right]^{p_{k,l}},
\]
and hence $x = (x_{k,l}) \in l^2_{\infty}(\Delta^m_n, \mathcal{M}, u, q, s)$.

(ii) Let $p_{k,l}$ for each (k, l) and $\sup_{k,l} p_{k,l} < \infty$. Let $x = (x_{k,l}) \in l^2_{\infty}(\Delta^m_n, \mathcal{M}, u, q, s)$. Then, for each $0 < \epsilon < 1$, there exists a positive integer N such that
\[
\sup_{k,l} (kl)^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right) \right] \leq \epsilon < 1,
\]
for all $k, l \in \mathbb{N}$. This implies that
\[
\sup_{k,l} (kl)^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right) \right]^{p_{k,l}} \leq \sup_{k,l} (kl)^{-s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right) \right].
\]
Thus $x = (x_{k,l}) \in l^2_{\infty}(\Delta^m_n, \mathcal{M}, u, p, q, s)$ and this completes the proof.

Theorem 2.1.6 Let $\mathcal{M}' = (M'_{k,l})$ and $\mathcal{M}'' = (M''_{k,l})$ be two sequences of Orlicz functions satisfying Δ_2-condition. If $\beta = \lim_{t \to \infty} \frac{M''_{k,l}(t)}{t} \geq 1$, then
\[
Z^2 \left(\Delta^m_n, \mathcal{M}', u, p, q, s \right) = Z^2 \left(\Delta^m_n, \mathcal{M}'' \circ \mathcal{M}', u, p, q, s \right).
\]

Proof. We prove it for $Z^2 = c^2$ and the other cases will follow on applying similar techniques. Let $x = (x_{k,l}) \in c^2(\Delta^m_n, \mathcal{M}', u, p, q, s)$, then
\[
P = \lim_{k,l} (kl)^{-s} u_{k,l} \left[M'_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right) \right]^{p_{k,l}} = 0.
\]
Let $0 < \epsilon < 1$ and δ with $0 < \delta < 1$ such that $M''_{k,l}(t) < \epsilon$ for $0 \leq t < \delta$. Let
\[
y_{k,l} = M'_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l}}{\rho} \right) \right)
\]
and consider
\[
[M''_{k,l}(y_{k,l})]^{p_{k,l}} \left[M'_{k,l}(y_{k,l}) \right]^{p_{k,l}} + [M''_{k,l}(y_{k,l})]^{p_{k,l}},
\]
where the first term is over $y_{k,l} \leq \delta$ and the second term is over $y_{k,l} > \delta$. From the first term in equation (2.1.5), we have
\[
(kl)^{-s} u_{k,l} [M''_{k,l}(y_{k,l})]^{p_{k,l}} < (kl)^{-s} u_{k,l} [M''_{k,l}(2)]^{p_{k,l}} \left[\left(y_{k,l} \right) \right]^{p_{k,l}}.
\]
On the other hand, we use the fact that
\[
y_{k,l} < \frac{y_{k,l}}{\delta} < 1 + \frac{y_{k,l}}{\delta}.
\]
Since \((M''_{k,l})\) is non-decreasing and convex, it follows that
\[
M''_{k,l}(y_{k,l}) - 1 + \frac{y_{k,l}}{\delta} < \frac{1}{2} M''_{k,l}(2) + \frac{1}{2} M''_{k,l}(\frac{2y_{k,l}}{\delta}).
\]
Since \((M''_{k,l})\) satisfies \(\Delta_2\)-condition, we have
\[
M''_{k,l}(y_{k,l}) < \frac{1}{2} K \frac{y_{k,l}}{\delta} M''_{k,l}(2) + \frac{1}{2} K \frac{y_{k,l}}{\delta} M''_{k,l}(2) = K \frac{y_{k,l}}{\delta} M''_{k,l}(2).
\]
Hence, from the second term in equation (2.1.5), it follows that
\[
(kl)^{-s} u_{k,l} [M''(y_{k,l})]^p_{k,l} \leq \max \left(1, (KM''_{k,l}(2)\delta^{-1})^H \right) (kl)^{-s} u_{k,l} [y_{k,l}]^p_{k,l}. \tag{2.1.7}
\]
By the equations (2.1.6) and (2.1.7), taking limit in the Pringsheim sense, we have
\[
x = (x_{k,l}) \in c^2(\Delta_n^m, \mathcal{M}'', u, p, q, s). \text{ Observe that in this part of the proof we did not need } \beta \geq 1. \text{ Now, let } \beta \geq 1 \text{ and } x = (x_{k,l}) \in c^2(\mathcal{M}', \Delta_n^m, u, p, q). \text{ Then, we have } M'_{k,l}(t) \geq \beta(t) \text{ for all } t \geq 0. \text{ It follows that } x = (x_{k,l}) \in c^2(\Delta_n^m, \mathcal{M}'', u, p, q, s) \text{ implies } x = (x_{k,l}) \in c^2(\Delta_n^m, \mathcal{M}', u, p, q, s). \text{ This implies } c^2(\Delta_n^m, \mathcal{M}', u, p, q, s) = c^2(\Delta_n^m, \mathcal{M}'', u, p, q, s).
\]

Theorem 2.1.7 Let \(\mathcal{M}' = (M'_{k,l})\) and \(\mathcal{M}'' = (M''_{k,l})\) be two sequences of Orlicz functions, \(q, q_1\) and \(q_2\) be seminorms and \(s, s_1\) and \(s_2\) be positive real numbers. Then

1. \(Z^2(\Delta_n^m, \mathcal{M}', u, p, q, s) \cap Z^2(\Delta_n^m, \mathcal{M}'', u, p, q, s) \subset Z^2(\Delta_n^m, \mathcal{M}' + \mathcal{M}'', u, p, q, s),\)
2. \(Z^2(\Delta_n^m, \mathcal{M}, u, p, q_1, s) \cap Z^2(\Delta_n^m, \mathcal{M}, u, p, q_2, s) \subset Z^2(\Delta_n^m, \mathcal{M}, u, p, q_1 + q_2, s),\)
3. if \(q_1\) is stronger than \(q_2\), then \(Z^2(\Delta_n^m, \mathcal{M}, u, p, q_1, s) \subset Z^2(\Delta_n^m, \mathcal{M}, u, p, q_2, s),\)
4. if \(s_1 \leq s_2\), then \(Z^2(\Delta_n^m, \mathcal{M}, u, p, q, s_1) \subset Z^2(\Delta_n^m, \mathcal{M}, u, p, q, s_2),\)

where \(Z^2 = c^2, c_0^2\) and \(l_\infty^2\).

Proof. (1) Let \(x = (x_{k,l}) \in c^2(\Delta_n^m, \mathcal{M}', u, p, q, s) \cap c^2(\Delta_n^m, \mathcal{M}'', u, p, q, s).\) Then
\[
P = \lim_{k,l} (kl)^{-s} u_{k,l} \left[M'_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l} - L}{\rho_1} \right) \right) \right]^{p_{k,l}} = 0, \text{ for some } \rho_1 > 0,
\]
\[
P = \lim_{k,l} (kl)^{-s} u_{k,l} \left[M''_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l} - L}{\rho_2} \right) \right) \right]^{p_{k,l}} = 0, \text{ for some } \rho_2 > 0.
\]
Let \(\rho = \max(\rho_1, \rho_2).\) The result follows from the following inequality
\[
(kl)^{-s} \left[(M'_{k,l} + M''_{k,l}) \left(q \left(\frac{\Delta_n^m x_{k,l} - L}{\rho} \right) \right) \right]^{p_{k,l}} \leq K \left\{ (kl)^{-s} u_{k,l} \left[M'_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l} - L}{\rho_1} \right) \right) \right]^{p_{k,l}} + (kl)^{-s} u_{k,l} \left[M''_{k,l} \left(q \left(\frac{\Delta_n^m x_{k,l} - L}{\rho_2} \right) \right) \right]^{p_{k,l}} \right\}.
\]
The proofs of (2), (3) and (4) follows by same pattern.

Theorem 2.1.8 If \(q_1 \equiv \text{(equivalent to)} \) \(q_2 \), then
\[
Z^2(\Delta^m_n; \mathcal{M}, u, p, q_1, s) = Z^2(\Delta^m_n; \mathcal{M}, u, p, q_2, s).
\]

Proof. It is easy to prove so we omit the details.

2.2 Double entire sequence spaces

In this section we make an attempt to study some interesting inclusion relations between double entire sequence spaces \(\Lambda^2_M(\Delta^m_n, u, p, q) \) and \(\Gamma^2_M(\Delta^m_n, u, p, q) \) defined by a sequence of Orlicz functions. The paranormed property and linearity of sequence spaces \(\Lambda^2_M(\Delta^m_n, u, p, q) \) and \(\Gamma^2_M(\Delta^m_n, u, p, q) \) are discussed in the beginning of this section.

Let \(\mathcal{M} = (M_{k,l}) \) be a sequence of Orlicz functions, \(p = (p_{k,l}) \) be a bounded sequence of positive real numbers, \(u = (u_{k,l}) \) be a sequence of strictly positive real numbers and \(X \) be locally convex Hausdorff topological linear space whose topology is determined by a set of continuous seminorms \(q \). The symbol \(\Lambda^2(X) \), \(\Gamma^2(X) \) denotes the space of all double analytic and double entire sequences respectively defined over \(X \).

Now, we define the following sequence spaces in this section:

\[
\Lambda^2_M(\Delta^m_n, u, p, q) = \left\{ x \in \Lambda^2(X) : \sup_{r,s} \frac{1}{(r,s)} \sum_{k,l=1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta^m_n x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right]^{p_{k,l}} < \infty, \text{ for some } \rho > 0 \right\},
\]

\[
\Gamma^2_M(\Delta^m_n, u, p, q) = \left\{ x \in \Gamma^2(X) : \frac{1}{(r,s)} \sum_{k,l=1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta^m_n x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right]^{p_{k,l}} \to 0 \text{ as } r, s \to \infty, \text{ for some } \rho > 0 \right\}.
\]

Theorem 2.2.1 Let \(\mathcal{M} = (M_{k,l}) \) be a sequence of Orlicz functions, \(p = (p_{k,l}) \) be a bounded sequence of positive real numbers and \(u = (u_{k,l}) \) be a sequence of strictly positive real numbers. Then the spaces \(\Gamma^2_M(\Delta^m_n, u, p, q) \) and \(\Lambda^2_M(\Delta^m_n, u, p, q) \) are linear spaces over the field of complex numbers \(\mathbb{C} \).
Proof. Let \(x, y \in \Gamma^2_M(\Delta^m_n, u, p, q) \) and \(\alpha, \beta \in \mathbb{C} \). In order to prove the result, we need to find some \(\rho_3 > 0 \) such that

\[
\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n (\alpha x_{k,l} + \beta y_{k,l})}{\rho_3} \right) \right) \right]^{p_{k,l}} \to 0 \quad \text{as} \quad r, s \to \infty. \tag{2.2.1}
\]

Since \(x, y \in \Gamma^2_M(\Delta^m_n, u, p, q) \), there exist some positive numbers \(\rho_1 \) and \(\rho_2 \) such that

\[
\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n (\alpha x_{k,l} + \beta y_{k,l})}{\rho_1} \right) \right) \right]^{p_{k,l}} \to 0 \quad \text{as} \quad r, s \to \infty \tag{2.2.2}
\]

and

\[
\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n (\alpha x_{k,l} + \beta y_{k,l})}{\rho_2} \right) \right) \right]^{p_{k,l}} \to 0 \quad \text{as} \quad r, s \to \infty. \tag{2.2.3}
\]

Since \(M = (M_{k,l}) \) is a non-decreasing convex function, \(q \) is a seminorm, \(\Delta^m_n \) is linear and so by using inequality (2.1), we have

\[
\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n (\alpha x_{k,l} + \beta y_{k,l})}{\rho_3} \right) \right) \right]^{p_{k,l}} \leq \frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n (\alpha x_{k,l} + \beta y_{k,l})}{\rho_3} + \frac{\Delta^m_n (x_{k,l})}{\rho_3} \right) \right) \right]^{p_{k,l}}.
\]

Take \(\rho_3 > 0 \) such that \(\frac{1}{\rho_3} = \min \left\{ \frac{1}{|\alpha| \rho_1}, \frac{1}{|\beta| \rho_2} \right\} \)

\[
\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n (\alpha x_{k,l} + \beta y_{k,l})}{\rho_3} \right) \right) \right]^{p_{k,l}} \leq \frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n (\alpha x_{k,l})}{\rho_1} + \frac{\Delta^m_n (y_{k,l})}{\rho_2} \right) \right) \right]^{p_{k,l}} \leq \frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n (x_{k,l})}{\rho_1} \right) \right) \right]^{p_{k,l}} + \frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n (y_{k,l})}{\rho_2} \right) \right) \right]^{p_{k,l}} \leq K \frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n (x_{k,l})}{\rho_1} \right) \right) \right]^{p_{k,l}} + K \frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n (y_{k,l})}{\rho_2} \right) \right) \right]^{p_{k,l}} \to 0 \quad \text{as} \quad r, s \to \infty.
\]
Hence
\[\sum_{k,l \geq 1} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n x_{k,l} + \beta \Delta^m_n y_{k,l}}{\rho^3} \right) \right) \right]^{p_{k,l}} \to 0 \quad \text{as} \quad r, s \to \infty. \]

This proves that \(\Gamma^2_M(\Delta^m_n, u, p, q) \) is a linear space. Similarly, we can prove that \(\Lambda^2_M(\Delta^m_n, u, p, q) \) is a linear space.

Theorem 2.2.2 Let \(M = (M_{k,l}) \) be a sequence of Orlicz functions, \(p = (p_{k,l}) \) be a bounded sequence of positive real numbers and \(u = (u_{k,l}) \) be a sequence of strictly positive real numbers. Then the space \(\Gamma^2_M(\Delta^m_n, u, p, q) \) is a paranormed space with paranorm defined by

\[g(x) = \inf \left\{ \rho \frac{p_{r,s}}{pr,s} : \sup_{k,l \geq 1} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n x_{k,l}}{\rho} \right) \right) \right]^{p_{k,l}} \leq 1, \; \rho > 0 \right\}, \]

where \(H = \max(1, \sup_{k,l} p_{k,l}) \).

Proof. Clearly \(g(x) \geq 0, \; g(x) = g(-x) \) and \(g(\theta) = 0 \), where \(\theta \) is the zero sequence of \(X \). For \((x_{k,l}), \; (y_{k,l}) \in \Gamma^2_M(\Delta^m_n, u, p, q)\), then there exist \(\rho_1, \; \rho_2 > 0 \) be such that

\[\sup_{k,l \geq 1} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n x_{k,l}}{\rho_1} \right) \right) \right]^{p_{k,l}} \leq 1 \]

and

\[\sup_{k,l \geq 1} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n y_{k,l}}{\rho_2} \right) \right) \right]^{p_{k,l}} \leq 1. \]

Suppose that \(\rho = \rho_1 + \rho_2 \), then

\[\sup_{k,l \geq 1} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n (x_{k,l} + y_{k,l})}{\rho} \right) \right) \right]^{p_{k,l}} \]

\[\leq \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \sup_{k,l \geq 1} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n x_{k,l}}{\rho_1} \right) \right) \right]^{p_{k,l}} \]

\[+ \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \sup_{k,l \geq 1} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n y_{k,l}}{\rho_2} \right) \right) \right]^{p_{k,l}} \]

\[\leq 1. \]

Hence

\[g(x + y) \leq \inf \left\{ (\rho_1 + \rho_2) \frac{p_{r,s}}{pr,s} : \right. \]

\[\left. \sup_{k,l \geq 1} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\Delta^m_n x_{k,l}}{\rho_1 + \rho_2} \right) \right) \right]^{p_{k,l}} \leq 1, \; \rho_1, \; \rho_2 > 0, \; r, s \in \mathbb{N} \right\} \]
Thus we have

\[g = \inf \left\{ (\rho_1)_{p,r} : \sup_{k,l \geq 1} u_{k,l} \left[M_{k,l} \left(q \left(\left(\frac{\Delta^m_n x_{k,l}}{r_s} \right)^{\frac{1}{k+l}} \right) \right) \right]^{p_{k,l}} \leq 1, \ \rho_1 > 0, \ r, s \in \mathbb{N} \right\} \]

+ \inf \left\{ (\rho_2)_{p,r} : \sup_{k,l \geq 1} u_{k,l} \left[M_{k,l} \left(q \left(\left(\frac{\Delta^m_n y_{k,l}}{r_s} \right)^{\frac{1}{k+l}} \right) \right) \right]^{p_{k,l}} \leq 1, \ \rho_2 > 0, \ r, s \in \mathbb{N} \right\}.

Thus we have \(g(x + y) \leq g(x) + g(y) \). Hence \(g \) satisfies the triangle inequality \(g(\lambda x) \)

\[= \inf \left\{ (\rho)_{p,r} : \sup_{k,l \geq 1} u_{k,l} \left[M_{k,l} \left(q \left(\left(\frac{\Delta^m_n x_{k,l}}{r_s} \right)^{\frac{1}{k+l}} \right) \right) \right]^{p_{k,l}} \leq 1, \ \rho > 0, \ r, s \in \mathbb{N} \right\} \]

\[= \inf \left\{ (t|\lambda)_{p,r} : \sup_{k,l \geq 1} u_{k,l} \left[M_{k,l} \left(q \left(\left(\frac{\Delta^m_n x_{k,l}}{r_s} \right)^{\frac{1}{k+l}} \right) \right) \right]^{p_{k,l}} \leq 1, \ t > 0, \ r, s \in \mathbb{N} \right\}, \]

where \(t = \frac{\rho}{|\lambda|} \). Hence \(\Gamma^2_{\mathcal{M}}(\Delta^m_n, u, p, q) \) is a paranormed space.

Theorem 2.2.3 If \(\mathcal{M}' = (M'_{k,l}) \) and \(\mathcal{M}'' = (M''_{k,l}) \) be two sequences of Orlicz functions, then

\[\Gamma^2_{\mathcal{M}'}(\Delta^m_n, u, p, q) \cap \Gamma^2_{\mathcal{M}''}(\Delta^m_n, u, p, q) \subseteq \Gamma^2_{\mathcal{M}' + \mathcal{M}''}(\Delta^m_n, u, p, q). \]

Proof. Let \(x \in \Gamma^2_{\mathcal{M}'}(\Delta^m_n, u, p, q) \cap \Gamma^2_{\mathcal{M}''}(\Delta^m_n, u, p, q) \). Then there exist \(\rho_1 \) and \(\rho_2 \) such that

\[\frac{1}{(r, s)} \sum_{k,l = 1, 1}^{r,s} u_{k,l} \left[M'_{k,l} \left(q \left(\left(\frac{\Delta^m_n x_{k,l}}{r_s} \right)^{\frac{1}{k+l}} \right) \right) \right]^{p_{k,l}} \to 0 \text{ as } r, s \to \infty \quad (2.2.4) \]

and

\[\frac{1}{(r, s)} \sum_{k,l = 1, 1}^{r,s} u_{k,l} \left[M''_{k,l} \left(q \left(\left(\frac{\Delta^m_n x_{k,l}}{r_s} \right)^{\frac{1}{k+l}} \right) \right) \right]^{p_{k,l}} \to 0 \text{ as } r, s \to \infty. \quad (2.2.5) \]

Let \(\rho = \min \left(\frac{1}{|\rho_1|}, \frac{1}{|\rho_2|} \right) \). Then we have

\[\frac{1}{(r, s)} \sum_{k,l = 1, 1}^{r,s} u_{k,l} \left[(M'_{k,l} + M''_{k,l}) \left(q \left(\left(\frac{\Delta^m_n x_{k,l}}{r_s} \right)^{\frac{1}{k+l}} \right) \right) \right]^{p_{k,l}} \]

\[\leq K \left[\frac{1}{(r, s)} \sum_{k,l = 1, 1}^{r,s} u_{k,l} \left[M'_{k,l} \left(q \left(\left(\frac{\Delta^m_n x_{k,l}}{r_s} \right)^{\frac{1}{k+l}} \right) \right) \right]^{p_{k,l}} \right] + \]

\[+ K \left[\frac{1}{(r, s)} \sum_{k,l = 1, 1}^{r,s} u_{k,l} \left[M''_{k,l} \left(q \left(\left(\frac{\Delta^m_n x_{k,l}}{r_s} \right)^{\frac{1}{k+l}} \right) \right) \right]^{p_{k,l}} \right] \to 0 \text{ as } r, s \to \infty \]

by equations (2.2.4) and (2.2.5). Therefore \(x \in \Gamma^2_{\mathcal{M}' + \mathcal{M}''}(\Delta^m_n, u, p, q) \) and this completes the proof of the theorem.
Theorem 2.2.4 If \(m \geq 1 \). Then we have the following inclusions:

(i) \(\Gamma^2_M(\Delta^{m-1}_n, u, p, q) \subseteq \Gamma^2_M(\Delta^m_n, u, p, q) \),

(ii) \(\Lambda^2_M(\Delta^{m-1}_n, u, p, q) \subseteq \Lambda^2_M(\Delta^m_n, u, p, q) \).

Proof. (i) Let \(x \in \Gamma^2_M(\Delta^{m-1}_n, u, p, q) \). Then we have

\[
\frac{1}{(r,s)} \sum_{k,l=1}^{r,s} u_{k,l} \left[M_{k,l}(q \left(\frac{|\Delta^{m-1}_n x_{k,l}|^{1/(k+l)}}{\rho} \right)) \right] \rightarrow 0 \quad \text{as} \quad r, s \rightarrow \infty, \quad \text{for some} \quad \rho > 0.
\]

Since \(M = (M_{k,l}) \) is non-decreasing, convex function and \(q \) is a seminorm, we have

\[
\frac{1}{(r,s)} \sum_{k,l=1}^{r,s} u_{k,l} \left[M_{k,l}(q \left(\frac{|\Delta^{m-1}_n x_{k,l}|^{1/(k+l)}}{\rho} \right)) \right] \leq K \left\{ \frac{1}{(r,s)} \sum_{k,l=1}^{r,s} u_{k,l} \left[M_{k,l}(q \left(\frac{|\Delta^{m-1}_n x_{k,l}|^{1/(k+l)}}{\rho} \right)) \right] \right\}
\]

\[
\rightarrow 0 \quad \text{as} \quad r, s \rightarrow \infty.
\]

Therefore

\[
\frac{1}{(r,s)} \sum_{k,l=1}^{r,s} u_{k,l} \left[M_{k,l}(q \left(\frac{|\Delta^{m-1}_n x_{k,l}|^{1/(k+l)}}{\rho} \right)) \right] \rightarrow 0 \quad \text{as} \quad r, s \rightarrow \infty. \quad \text{Hence} \quad x \in \Gamma^2_M(\Delta^m_n, u, p, q). \]

This completes the proof of (i). Similarly, we can prove (ii).

Theorem 2.2.5 If \(0 \leq p_{k,l} \leq t_{k,l} \) and let \(\left\{ \frac{t_{k,l}}{p_{k,l}} \right\} \) be bounded, then

\(\Gamma^2_M(\Delta^m_n, u, t, q) \subseteq \Gamma^2_M(\Delta^m_n, u, p, q) \).

Proof. Let \(x \in \Gamma^2_M(\Delta^m_n, u, t, q) \). Then

\[
\frac{1}{(r,s)} \sum_{k,l=1}^{r,s} u_{k,l} \left[M_{k,l}(q \left(\frac{|\Delta^m_n x_{k,l}|^{1/(k+l)}}{\rho} \right)) \right] \rightarrow 0 \quad \text{as} \quad r, s \rightarrow \infty. \quad (2.2.6)
\]
Let \(w_{k,l} = \frac{1}{(r,s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\left| \Delta_{n}^{m} x_{k,l} \right|^{1+k}}{\rho} \right) \right) \right]^{t_{k,l}} \) and \((\lambda_{k,l}) = (\frac{p_{k,l}}{t_{k,l}})\). Since \(p_{k,l} \leq t_{k,l} \), we have \(0 \leq \lambda_{k,l} \leq 1 \). Take \(0 < \lambda < \lambda_{k,l} \). Define

\[u_{k,l} = \begin{cases} w_{k,l}, & \text{if } w_{k,l} \geq 1 \\ 0, & \text{if } w_{k,l} < 1 \end{cases} \]

and

\[v_{k,l} = \begin{cases} 0, & \text{if } w_{k,l} \geq 1 \\ w_{k,l}, & \text{if } w_{k,l} < 1 \end{cases} \]

\(w_{k,l} = u_{k,l} + v_{k,l} \), \(w_{k,l}^{\lambda} = \frac{\lambda_{k,l}}{t_{k,l}} \). It follows that \(u_{k,l}^{\lambda} \leq u_{k,l} \leq w_{k,l} \), \(v_{k,l}^{\lambda} \leq v_{k,l} \).

Since \(w_{k,l} = u_{k,l}^{\lambda} + v_{k,l} \), then \(w_{k,l}^{\lambda} \leq w_{k,l} + v_{k,l} \).

\[
\frac{1}{(r,s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\left| \Delta_{n}^{m} x_{k,l} \right|^{1+k}}{\rho} \right) \right) \right]^{\lambda_{k,l}} \leq \frac{1}{(r,s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\left| \Delta_{n}^{m} x_{k,l} \right|^{1+k}}{\rho} \right) \right) \right]^{t_{k,l}}
\]

\[
\Rightarrow \frac{1}{(r,s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\left| \Delta_{n}^{m} x_{k,l} \right|^{1+k}}{\rho} \right) \right) \right]^{p_{k,l}/t_{k,l}} \leq \frac{1}{(r,s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\left| \Delta_{n}^{m} x_{k,l} \right|^{1+k}}{\rho} \right) \right) \right]^{t_{k,l}}
\]

\[
\Rightarrow \frac{1}{(r,s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\left| \Delta_{n}^{m} x_{k,l} \right|^{1+k}}{\rho} \right) \right) \right]^{p_{k,l}} \leq \frac{1}{(r,s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\left| \Delta_{n}^{m} x_{k,l} \right|^{1+k}}{\rho} \right) \right) \right]^{t_{k,l}}
\]

\[
\rightarrow 0 \text{ as } r,s \rightarrow \infty \text{ (by equation (2.6))}.
\]

Therefore

\[
\frac{1}{(r,s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\left| \Delta_{n}^{m} x_{k,l} \right|^{1+k}}{\rho} \right) \right) \right]^{p_{k,l}} \rightarrow 0 \text{ as } r,s \rightarrow \infty.
\]

Hence \(x \in \Gamma_{M}^{\mathcal{A}}(\Delta_{n}^{m}, u, p, q) \). From equation (2.6), we get

\[
\Gamma_{M}^{\mathcal{A}}(\Delta_{n}^{m}, u, t, q) \subset \Gamma_{M}^{\mathcal{A}}(\Delta_{n}^{m}, u, p, q).
\]
Theorem 2.2.6 (i) If $0 < \inf p_{k,l} \leq p_{k,l} \leq 1$, then $\Gamma^2_M(\Delta^n, u, p, q) \subset \Gamma^2_M(\Delta^n, u, q)$.

(ii) If $1 \leq p_{k,l} \leq \sup p_{k,l} < \infty$, then $\Gamma^2_M(\Delta^n, u, q) \subset \Gamma^2_M(\Delta^n, u, p, q)$.

Proof. (i) Let $x \in \Gamma^2_M(\Delta^n, u, p, q)$. Then

$$\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta^n x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right] \rightarrow 0 \text{ as } r, s \rightarrow \infty. \quad (2.2.7)$$

Since $0 < \inf p_{k,l} \leq p_{k,l} \leq 1$,

$$\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta^n x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right] \leq \frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta^n x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right] \rightarrow 0 \text{ as } r, s \rightarrow \infty. \quad (2.2.8)$$

From equations (2.2.7) and (2.2.8), it follows that, $x \in \Gamma^2_M(\Delta^n, u, q)$. Thus

$$\Gamma^2_M(\Delta^n, u, p, q) \subset \Gamma^2_M(\Delta^n, u, q).$$

(ii) Let $p_{k,l} \geq 1$ for each k, l and $\sup p_{k,l} < \infty$ and let $x \in \Gamma^2_M(\Delta^n, u, q)$. Then

$$\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta^n x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right] \rightarrow 0 \text{ as } r, s \rightarrow \infty. \quad (2.2.9)$$

Since $1 \leq p_{k,l} \leq \sup p_{k,l} < \infty$, we have

$$\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta^n x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right] \leq \frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta^n x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right] \rightarrow 0 \text{ as } r, s \rightarrow \infty.$$

This implies that $x \in \Gamma^2_M(\Delta^n, u, p, q)$. Therefore $\Gamma^2_M(\Delta^n, u, q) \subset \Gamma^2_M(\Delta^n, u, p, q)$.

Theorem 2.2.7 If $\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta^n x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right] \leq |x_{k,l}|^{1/k+l}$, then $\Gamma^2 \subset \Gamma^2_M(\Delta^n, u, p, q)$.

Proof. Let $x \in \Gamma^2$. Then we have,

$$|x_{k,l}|^{1/k+l} \rightarrow 0 \text{ as } k, l \rightarrow \infty. \quad (2.2.10)$$
But \(\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right]^{p_{k,l}} \leq |x_{k,l}|^{1/k+l} \), by our assumption, implies that

\[\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right]^{p_{k,l}} \to 0 \text{ as } r, s \to \infty \text{ by (2.2.9)}. \]

Then \(x \in \Gamma^2_\mathcal{M}(\Delta_n^m, u, p, q) \) and \(\Gamma^2 \subset \Gamma^2_\mathcal{M}(\Delta_n^m, u, p, q) \).

Theorem 2.2.8 \(\Gamma^2_\mathcal{M}(\Delta_n^m, u, p, q) \) is a solid space.

Proof. Let \((x_{k,l}) \in \Gamma^2_\mathcal{M}(\Delta_n^m, u, p, q) \), then

\[\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right]^{p_{k,l}} \to 0 \text{ as } r, s \to \infty, \text{ for some } \rho > 0. \]

Let \((\alpha_{k,l}) \) be a double sequence of scalars such that \(|\alpha_{k,l}| \leq 1 \) for all \(k, l \in \mathbb{N} \times \mathbb{N} \). Then we have

\[\frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right]^{p_{k,l}} \leq \frac{1}{(r, s)} \sum_{k,l=1,1}^{r,s} u_{k,l} \left[M_{k,l} \left(q \left(\frac{|\Delta x_{k,l}|^{1/k+l}}{\rho} \right) \right) \right]^{p_{k,l}} \to 0 \text{ as } r, s \to \infty \]

and this completes the proof.

Corollary 2.2.9 \(\Gamma^2_\mathcal{M}(\Delta_n^m, u, p, q) \) is a monotone space.

Proof. It is obvious.

2.3 Chi double sequence spaces

This section presents a study of double chi and double analytic sequence spaces \(\chi^2_\mathcal{M}[\hat{c}, \Delta^m, u, p, q] \) and \(\Lambda^2_\mathcal{M}[\hat{c}, \Delta^m, u, p, q] \) defined by a sequence of Orlicz functions. It turns out that these spaces are linear and paranormed spaces. Some inclusion relations are reported in the end of this section.

Let \(\mathcal{M} = (M_{k,l}) \) be a sequence of Orlicz functions, \(p = (p_{k,l}) \) be a bounded sequence of positive real numbers and \(u = (u_{k,l}) \) be a sequence of strictly positive real numbers. Also, let \((X, q) \) be a seminormed space over the field of complex numbers \(\mathbb{C} \) with the semi norm \(q \). We define the following sequence spaces in this section:
\[\chi^2_M[\hat{c}, \Delta^m, u, p, q] = \]
\[\left\{ x = (x_{k,l}) \in w^2(X) : \lim_{\mu^\gamma \to \infty} \frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q\left(\frac{((k + l)!|\Delta^m x_{k+s,l+s}|)^{1/(k+s+l)}}{\rho} \right) \right) \right] p_{k,l} = 0, \quad \text{uniformly in } s, \text{ for some } \rho > 0 \right\} \]

and

\[\Lambda^2_M[\hat{c}, \Delta^m, u, p, q] = \]
\[\left\{ x = (x_{k,l}) \in w^2(X) : \sup_{\mu^\gamma \to \infty} \frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q\left(\frac{((k + l)!|\Delta^m x_{k+s,l+s}|)^{1/(k+s+l)}}{\rho} \right) \right) \right] p_{k,l} < \infty, \quad \text{uniformly in } s, \text{ for some } \rho > 0 \right\} . \]

If \(M(x) = x \), we get

\[\chi^2[\hat{c}, \Delta^m, u, p, q] = \]
\[\left\{ x = (x_{k,l}) \in w^2(X) : \lim_{\mu^\gamma \to \infty} \frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q\left(\frac{((k + l)!|\Delta^m x_{k+s,l+s}|)^{1/(k+s+l)}}{\rho} \right) \right) \right] p_{k,l} = 0, \quad \text{uniformly in } s, \text{ for some } \rho > 0 \right\} \]

and

\[\Lambda^2[\hat{c}, \Delta^m, u, p, q] = \]
\[\left\{ x = (x_{k,l}) \in w^2(X) : \sup_{\mu^\gamma \to \infty} \frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q\left(\frac{((k + l)!|\Delta^m x_{k+s,l+s}|)^{1/(k+s+l)}}{\rho} \right) \right) \right] p_{k,l} < \infty, \quad \text{uniformly in } s, \text{ for some } \rho > 0 \right\} . \]

If \(p = (p_{k,l}) = 1 \) for all \(k, l \), we get

\[\chi^2_M[\hat{c}, \Delta^m, u, q] = \]
\[\left\{ x = (x_{k,l}) \in w^2(X) : \lim_{\mu^\gamma \to \infty} \frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q\left(\frac{((k + l)!|\Delta^m x_{k+s,l+s}|)^{1/(k+s+l)}}{\rho} \right) \right) \right] = 0, \quad \text{uniformly in } s, \text{ for some } \rho > 0 \right\} \]

and
\[\Lambda^2_M[\hat{c}, \Delta^m, u, q] = \]
\[\left\{ x = (x_{k,l}) \in w^2(X) : \sup_{\mu^\gamma \to \infty} \frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m x_{k,s,l+s}|)^{\frac{1}{\kappa_s + l_t}}}{\rho} \right) \right) \right] < \infty, \]
\[\text{uniformly in } s, \text{ for some } \rho > 0 \} \]

Theorem 2.3.1 Let \(M = (M_{k,l}) \) be a sequence of Orlicz functions, \(p = (p_{k,l}) \) be a bounded sequence of positive real numbers and \(u = (u_{k,l}) \) be a sequence of strictly positive real numbers. Then \(\chi_M^2[\hat{c}, \Delta^m, u, p, q] \) and \(\Lambda^2_M[\hat{c}, \Delta^m, u, p, q] \) are linear spaces over the field of complex numbers \(\mathbb{C} \).

Proof. Let \(x = (x_{k,l}) \in \chi_M^2[\hat{c}, \Delta^m, u, p, q] \) and \(\alpha, \beta \in \mathbb{C} \). Then there exist positive real numbers \(\rho_1, \rho_2 > 0 \) such that
\[\lim_{\mu^\gamma \to \infty} \frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m x_{k,s,l+s}|)^{\frac{1}{\kappa_s + l_t}}}{\rho_1} \right) \right) \right]^{p_{k,l}} = 0, \text{ for some } \rho_1 > 0 \]
and
\[\lim_{\mu^\gamma \to \infty} \frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m y_{k,s,l+s}|)^{\frac{1}{\kappa_s + l_t}}}{\rho_2} \right) \right) \right]^{p_{k,l}} = 0, \text{ for some } \rho_2 > 0. \]
Let \(\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2) \). Since \(M = (M_{k,l}) \) is non-decreasing, convex and therefore by using inequality (2.1), we have
\[\lim_{\mu^\gamma \to \infty} \frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^{m(\alpha x_{k,s,l+s} + \beta y_{k,s,l+s})|)^{\frac{1}{\kappa_s + l_t}}}{\rho_3} \right) \right) \right]^{p_{k,l}} \]
\[\leq \lim_{\mu^\gamma \to \infty} \frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m x_{k,s,l+s}|)^{\frac{1}{\kappa_s + l_t}}}{\rho_3} \right) \right) \right]^{p_{k,l}} \]
\[+ \left(\frac{((k + l)!|\Delta^m \beta y_{k,s,l+s}|)^{\frac{1}{\kappa_s + l_t}}}{\rho_3} \right)^{p_{k,l}} \]
\[\leq K \lim_{\mu^\gamma \to \infty} \frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} \frac{1}{2^{k,l}} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m x_{k,s,l+s}|)^{\frac{1}{\kappa_s + l_t}}}{\rho_1} \right) \right) \right]^{p_{k,l}} \]
\[+ K \lim_{\mu^\gamma \to \infty} \frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} \frac{1}{2^{k,l}} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m y_{k,s,l+s}|)^{\frac{1}{\kappa_s + l_t}}}{\rho_2} \right) \right) \right]^{p_{k,l}} \]
\[\leq K \lim_{\mu^\gamma \to \infty} \frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m x_{k,s,l+s}|)^{\frac{1}{\kappa_s + l_t}}}{\rho_1} \right) \right) \right]^{p_{k,l}} \]
Thus \(\alpha x + \beta y \in \chi^2_M[\hat{c}, \Delta^m, u, p, q] \). This proves that \(\chi^2_M[\hat{c}, \Delta^m, u, p, q] \) is a linear space. Similarly, we can prove that \(\Lambda^2_M[\hat{c}, \Delta^m, u, p, q] \) is a linear space. This completes the proof of the theorem.

Theorem 2.3.2 Let \(\mathcal{M} = (M_{k,l}) \) be a sequence of Orlicz functions, \(p = (p_{k,l}) \) be a bounded sequence of positive real numbers and \(u = (u_{k,l}) \) be a sequence of strictly positive real numbers. Then \(\chi^2_M[\hat{c}, \Delta^m, u, p, q] \) is a paranormed space with the paranorm

\[
g(x) = \inf \left\{ \rho^{\mu_\gamma H} : \sup_{\mu_\gamma \geq 1} \frac{1}{\mu_\gamma} \sum_{k,l=1}^{\mu_\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!! \Delta^m x_{k+s,l+s})}{\rho_1} \right) \right) \right]^{p_{k,l}} \leq 1, \rho > 0 \right\}, \text{ where } H = \max \left(1, \sup_{k,l} p_{k,l} \right).
\]

Proof.

(i) Clearly \(g(x) \geq 0 \) for \(x = (x_{k,l}) \in \chi^2_M[\hat{c}, \Delta^m, u, p, q] \). Since \(\mathcal{M}(0) = 0 \), we get \(g(0) = 0 \).

(ii) \(g(-x) = g(x) \).

(iii) Let \(x = (x_{k,l}), \ y = (y_{k,l}) \in \chi^2_M[\hat{c}, \Delta^m, u, p, q] \), then there exist positive number \(\rho_1, \rho_2 > 0 \) such that

\[
\lim_{\mu_\gamma \to \infty} \frac{1}{\mu_\gamma} \sum_{k,l=1}^{\mu_\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!! \Delta^m x_{k+s,l+s})}{\rho_1} \right) \right) \right]^{p_{k,l}} = 0
\]

and

\[
\lim_{\mu_\gamma \to \infty} \frac{1}{\mu_\gamma} \sum_{k,l=1}^{\mu_\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!! \Delta^m y_{k+s,l+s})}{\rho_2} \right) \right) \right]^{p_{k,l}} = 0.
\]

Let \(\rho = \rho_1 + \rho_2 \). Then by using Minkowski’s inequality, we have

\[
u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!! \Delta^m (x_{k+s,l+s} + y_{k+s,l+s}))}{\rho} \right) \right) \right]^{p_{k,l}} \leq \nu_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!! \Delta^m (x_{k+s,l+s}))}{\rho_1 + \rho_2} \right) \right) \right]^{p_{k,l}}
\]
\begin{align*}
&+ u_{k,l} \left[M_{k,l} \left(q \left(\frac{(k + l) || \Delta^m (y_{k+s,l+s}) ||^{\frac{1}{\rho_1 + \rho_2}}} \rho_1 + \rho_2 \right) \right) \right]^{p_{k,l}} \\
&\leq \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) u_{k,l} \left[M_{k,l} \left(q \left(\frac{(k + l) || \Delta^m (x_{k+s,l+s}) ||^{\frac{1}{\rho_1}}} \rho_1 \right) \right) \right]^{p_{k,l}} \\
&+ \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) u_{k,l} \left[M_{k,l} \left(q \left(\frac{(k + l) || \Delta^m (y_{k+s,l+s}) ||^{\frac{1}{\rho_2}}} \rho_2 \right) \right) \right]^{p_{k,l}}
\end{align*}

and thus

\[g(x + y) = \inf \left\{ \rho_1, \rho_2 \right\}^{p_{\mu, \gamma}/H} : \sup_{\mu \geq 1} \frac{1}{\mu} \sum_{k,l=1}^{\mu} u_{k,l} \left[M_{k,l} \left(q \left(\frac{(k + l) || \Delta^m (x_{k+s,l+s} + y_{k+s,l+s}) ||^{\frac{1}{\rho_1 + \rho_2}}} \rho_1 + \rho_2 \right) \right) \right]^{p_{k,l}} \leq \inf \left\{ \rho_1, \rho_2 \right\}^{p_{\mu, \gamma}/H} : \sup_{\mu \geq 1} \frac{1}{\mu} \sum_{k,l=1}^{\mu} u_{k,l} \left[M_{k,l} \left(q \left(\frac{(k + l) || \Delta^m (x_{k+s,l+s}) ||^{\frac{1}{\rho_1}}} \rho_1 \right) \right) \right]^{p_{k,l}} + \inf \left\{ \rho_1, \rho_2 \right\}^{p_{\mu, \gamma}/H} : \sup_{\mu \geq 1} \frac{1}{\mu} \sum_{k,l=1}^{\mu} u_{k,l} \left[M_{k,l} \left(q \left(\frac{(k + l) || \Delta^m (y_{k+s,l+s}) ||^{\frac{1}{\rho_2}}} \rho_2 \right) \right) \right]^{p_{k,l}}. \]

Now, let \(\lambda \in \mathbb{C} \), then the continuity of the product follows from the following inequality

\[g(\lambda x) = \inf \left\{ \rho_1, \rho_2 \right\}^{p_{\mu, \gamma}/H} : \sup_{\mu \geq 1} \frac{1}{\mu} \sum_{k,l=1}^{\mu} u_{k,l} \left[M_{k,l} \left(q \left(\frac{(k + l) || \Delta^m \lambda x_{k+s,l+s} ||^{\frac{1}{\rho_1 + \rho_2}}} \rho_1 + \rho_2 \right) \right) \right]^{p_{k,l}} = \inf \left\{ \lambda \left\| \rho_1, \rho_2 \right\}^{p_{\mu, \gamma}/H} : \sup_{\mu \geq 1} \frac{1}{\mu} \sum_{k,l=1}^{\mu} u_{k,l} \left[M_{k,l} \left(q \left(\frac{(k + l) || \Delta^m (y_{k+s,l+s}) ||^{\frac{1}{\rho_2}}} \rho_2 \right) \right) \right]^{p_{k,l}}, \]

where \(r = \frac{\rho_1}{|\lambda|} \). This completes the proof of the theorem.

Theorem 2.3.3 Let \(\mathcal{M} = (M_{k,l}) \) and \(\mathcal{T} = (T_{k,l}) \) be two sequences of Orlicz functions. Then

\[\chi_{\mathcal{M}}^2 [\hat{c}, \Delta^m, u, p, q] \cap \chi_{\mathcal{T}}^2 [\hat{c}, \Delta^m, u, p, q] \subseteq \chi_{\mathcal{M} + \mathcal{T}}^2 [\hat{c}, \Delta^m, u, p, q]. \]

Proof. It is easy to prove, so we omit the details.

Theorem 2.3.4 Let \(\mathcal{M} = (M_{k,l}) \) and \(\mathcal{T} = (T_{k,l}) \) be two sequences of Orlicz functions and let \(q_1 \) and \(q_2 \) be two seminorms on \(X \), we have
(i) $\chi^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, p, q_1] \cap \chi^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, p, q_2] \subseteq \chi^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, p, q_1 + q_2],$

(ii) if q_1 is stronger than q_2 then $\chi^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, p, q_1] \subseteq \chi^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, p, q_2],$

(iii) if q_1 is equivalent to q_2 then $\chi^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, p, q_1] = \chi^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, p, q_2].$

Proof. It is trivial, so we omit it.

Theorem 2.3.5

(i) Let $0 \leq p_{k,l} \leq r_{k,l}$ and $\left\{ \frac{r_{k,l}}{p_{k,l}} \right\}$ be bounded. Then

$$\chi^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, r, q] \subset \chi^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, p, q].$$

(ii) If $u_1 \leq u_2$ implies $\chi^2_{\mathcal{M}}[\hat{c}, \Delta^m, u_1, p, q] \subset \chi^2_{\mathcal{M}}[\hat{c}, \Delta^m, u_2, p, q].$

Proof.

(i) Let $x = (x_{k,l}) \in \chi^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, r, q]$. Then

$$\lim_{\mu \gamma \to \infty} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m x_{k+s,l+s}|)^{\frac{1}{q_s + t_s}}}{r} \right) \right) \right]_{r_{k,l}} = 0.$$

Let

$$t_{k,l} = \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m x_{k+s,l+s}|)^{\frac{1}{q_s + t_s}}}{r} \right) \right) \right]_{r_{k,l}}$$

and $(\lambda_{k,l}) = \left(\frac{p_{k,l}}{r_{k,l}} \right)$. Since $p_{k,l} \leq r_{k,l}$, we have $0 \leq \lambda_{k,l} \leq 1$. Take $0 < \lambda < \lambda_{k,l}$.

Define $u_{k,l} = t_{k,l} (t_{k,l} \geq 1)$; $u_{k,l} = 0 (t_{k,l} < 1)$; and $v_{k,l} = 0 (t_{k,l} \geq 1)$; $v_{k,l} = t_{k,l} (t_{k,l} < 1)$; $t_{k,l} = u_{k,l} + v_{k,l}$; $t_{\lambda,k,l} \leq v_{\lambda,k,l}$.

Now it follows that

$$u_{\lambda,k,l} \leq t_{k,l} \text{ and } v_{\lambda,k,l} \leq v_{k,l}$$ (2.3.1)

i.e $t_{\lambda,k,l} = u_{\lambda,k,l} + v_{\lambda,k,l}$, $t_{\lambda,k,l} \leq t_{k,l} + v_{k,l}$ by equation (2.3.1). Thus

$$\lim_{\mu \gamma \to \infty} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m x_{k+s,l+s}|)^{\frac{1}{q_s + t_s}}}{r} \right) \right) \right]_{r_{k,l}} \lambda_{k,l}$$

$$\leq \lim_{\mu \gamma \to \infty} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m x_{k+s,l+s}|)^{\frac{1}{q_s + t_s}}}{r} \right) \right) \right]_{r_{k,l}}$$
⇒ \lim_{\mu \to \infty} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k+l)!!(\Delta^m x_{k+s,l+s})^{\frac{1}{\lambda(x+l)}})}{\rho} \right) \right) \right]^{\frac{p_{k,l}}{r_{k,l}}} \\
\leq \lim_{\mu \to \infty} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k+l)!!(\Delta^m x_{k+s,l+s})^{\frac{1}{\lambda(x+l)}})}{\rho} \right) \right) \right]^{r_{k,l}} \\
\Rightarrow \lim_{\mu \to \infty} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k+l)!!(\Delta^m x_{k+s,l+s})^{\frac{1}{\lambda(x+l)}})}{\rho} \right) \right) \right]^{r_{k,l}} \\
= \lim_{\mu \to \infty} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k+l)!!(\Delta^m x_{k+s,l+s})^{\frac{1}{\lambda(x+l)}})}{\rho} \right) \right) \right]^{r_{k,l}} = 0,
we have
\\
\lim_{\mu \to \infty} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k+l)!!(\Delta^m x_{k+s,l+s})^{\frac{1}{\lambda(x+l)}})}{\rho} \right) \right) \right]^{p_{k,l}} = 0.

Hence \(x = (x_{k,l}) \in \chi^2_M[\hat{c}, \Delta^m, u, p, q] \). This proves that
\[
\chi^2_M[\hat{c}, \Delta^m, u, r, q] \subseteq \chi^2_M[\hat{c}, \Delta^m, u, p, q].
\]

(ii) The proof is easy, so omitted.

Theorem 2.3.6 Let \(M = (M_{k,l}) \) be a sequence of Orlicz functions, \(p = (p_{k,l}) \) be a bounded sequence of positive real numbers and \(u = (u_{k,l}) \) be a sequence of strictly positive real numbers. Then the following statements are equivalent:

(i) \(\Lambda^2[\hat{c}, \Delta^m, u, p, q] \subseteq \Lambda^2_M[\hat{c}, \Delta^m, u, p, q] \),

(ii) \(\chi^2[\hat{c}, \Delta^m, u, p, q] \subseteq \chi^2_M[\hat{c}, \Delta^m, u, p, q] \),

(iii) \(\sup_{\mu} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k+l)!!(\Delta^m x_{k+s,l+s})^{\frac{1}{\lambda(x+l)}})}{\rho} \right) \right) \right]^{p_{k,l}} < \infty. \)

Proof. (i) \(\Rightarrow \) (ii) is obvious.
(ii) ⇒ (iii) Let $\chi^2[\hat{c}, \Delta^m, u, p, q] \subseteq \Lambda^2_M[\hat{c}, \Delta^m, u, p, q]$. Suppose that (iii) is not satisfied. Then for some $\rho > 0$, we have

$$\sup_{\mu \gamma} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k+l)!\Delta^m x_{k+l,s+l})^{\frac{1}{k_s+l_s}}}{\rho} \right) \right) \right]^{p_{k,l}} = \infty$$

and therefore there is sequence $(\mu_i \gamma_i)$ of positive integers such that

$$\frac{1}{\mu_i \gamma_i} \sum_{k,l=1}^{\mu_i \gamma_i} u_{k,l} \left[M_{k,l} \left(q \left(\frac{i-1}{\rho} \right) \right) \right]^{p_{k,l}} > i, \ i = 1, 2, \ldots.$$ \hspace{1cm} (2.3.2)

Define $x = (x_{k,l})$ by

$$\left((k+l)!\Delta^m x_{k,l} \right)^{\frac{1}{k+l}} = \begin{cases} i^{-1}, & \text{if } 1 \leq k, l \leq \mu_i \gamma_i, \ i = 1, 2, \ldots \\ 0, & \text{if } k > \mu_i, \ l > \gamma_i \end{cases}$$

Then $x \in \chi^2[\hat{c}, \Delta^m, u, p, q]$ but by equation (2.3.2), $x \notin \Lambda^2_M[\hat{c}, \Delta^m, u, p, q]$ which contradicts (ii). Hence (iii) must hold.

(iii) ⇒ (i) Let (iii) satisfied and $x = (x_{k,l}) \in \Lambda^2[\hat{c}, \Delta^m, u, p, q]$. Suppose that $x \notin \Lambda^2[\hat{c}, \Delta^m, u, p, q]$. Then

$$\sup_{(\mu \gamma)} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{(k+l)!\Delta^m x_{k+l,s+l})^{\frac{1}{k_s+l_s}}}{\rho} \right) \right) \right]^{p_{k,l}} = \infty. \hspace{1cm} (2.3.3)$$

Let $t = ((k+l)!\Delta^m x_{k+l,s+l})^{\frac{1}{k_s+l_s}}$ for each k, l and fixed s, then by equation (2.3.3)

$$\sup_{(\mu \gamma)} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{t}{\rho} \right) \right) \right]^{p_{k,l}} = \infty,$$

which contradicts (iii). Hence (i) must hold. This completes the proof.

Theorem 2.3.7 Let $\mathcal{M} = (M_{k,l})$ be a sequence of Orlicz functions, $p = (p_{k,l})$ be a bounded sequence of positive real numbers and $u = (u_{k,l})$ be a sequence of strictly positive real numbers. Then the following statements are equivalent:

(i) $\chi^2_M[\hat{c}, \Delta^m, u, p, q] \subseteq \chi^2[\hat{c}, \Delta^m, u, p, q]$,

(ii) $\chi^2_M[\hat{c}, \Delta^m, u, p, q] \subseteq \Lambda^2_M[\hat{c}, \Delta^m, u, p, q]$,

(iii) $\inf_{\mu \gamma} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{t}{\rho} \right) \right) \right]^{p_{k,l}} > 0, \ (t, \rho > 0).$
where \(t = ((k + l)!|\Delta^m x_{k+s,l+s}|)^{\frac{1}{s^2 + r^2}} \).

Proof. \((i) \Rightarrow (ii)\) is obvious.

\((ii) \Rightarrow (iii)\) Let \(\chi^2[\hat{c}, \Delta^m, u, p, q] \subseteq \Lambda^2[\hat{c}, \Delta^m, u, p, q] \). Suppose that \((iii)\) is not satisfied. Then for some \(\rho > 0 \), we have

\[
\inf_{\mu\gamma} \frac{1}{\mu\gamma} \sum_{k,l=1}^{\mu\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{t}{\rho} \right) \right) \right]^{p_{k,l}} = 0 \quad (t, \rho > 0). \tag{2.3.4}
\]

We can choose an index sequence \((\mu_i\gamma_i)\) of positive integers such that

\[
\frac{1}{\mu_i\gamma_i} \sum_{k,l=1}^{\mu_i\gamma_i} u_{k,l} \left[M_{k,l} \left(q \left(\frac{i}{\rho} \right) \right) \right]^{p_{k,l}} > i^{-1}, \quad i = 1, 2, \ldots.
\]

Define \(x = (x_{k,l}) \) by

\[
\left((k + l)!|\Delta^m x_{k,l}| \right)^{\frac{1}{\mu\gamma}} = \begin{cases}
1, & \text{if } 1 \leq k, l \leq \mu_i\gamma_i, \quad i = 1, 2, \ldots \\
0, & \text{if } k, l > \mu_i\gamma_i
\end{cases}
\]

Thus by equation (2.3.4) \(x \in \chi^2_M[\hat{c}, \Delta^m, u, p, q] \) but \(x \notin \Lambda^2[\hat{c}, \Delta^m, u, p, q] \) which contradicts \((ii)\). Hence \((iii)\) must hold.

\((iii) \Rightarrow (i)\) Let \((iii)\) satisfied and \(x = (x_{k,l}) \in \chi^2_M[\hat{c}, \Delta^m, u, p, q] \), then

\[
\lim_{\mu\gamma \to \infty} \frac{1}{\mu\gamma} \sum_{k,l=1}^{\mu\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m x_{k+s,l+s}|)^{\frac{1}{s^2 + r^2}})}{\rho} \right) \right]^{p_{k,l}} = 0, \quad \text{uniformly in } s. \tag{2.3.5}
\]

Suppose that \(x \notin \chi^2[\hat{c}, \Delta^m, u, p, q] \). Then for some number \(\epsilon_0 > 0 \) and index \(\mu_0\gamma_0 \), we have \((k_s + l_s)!|\Delta^m x_{k_s+l_s}|^{\frac{1}{s^2 + r^2}} \geq \epsilon_0 \), for some \(s > s' \) and \(1 \leq k, l \leq \mu_0\gamma_0 \). Therefore,

\[
u_{k,l} \left[M_{k,l} \left(q \left(\frac{\epsilon_0}{\rho} \right) \right) \right]^{p_{k,l}} \leq u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k_s + l_s)!|\Delta^m x_{k+s,l+s}|)^{\frac{1}{s^2 + r^2}})}{\rho} \right) \right]^{p_{k,l}}
\]

and consequently by equation (2.3.5). Hence

\[
\lim_{\mu\gamma \to \infty} \frac{1}{\mu\gamma} \sum_{k,l=1}^{\mu\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\epsilon_0}{\rho} \right) \right) \right]^{p_{k,l}} = 0,
\]

which contradicts \((iii)\). Hence \(\chi^2_M[\hat{c}, \Delta^m, u, p, q] \subseteq \chi^2[\hat{c}, \Delta^m, u, p, q] \). This completes the proof.

Theorem 2.3.8 Let \(1 \leq p_{k,l} \leq \sup_{k,l} p_{k,l} < \infty \). The inclusion

\[
\Lambda^2_M[\hat{c}, \Delta^m, u, p, q] \subseteq \chi^2[\hat{c}, \Delta^m, u, p, q]
\]
hold if and only if

\[
\frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{t}{\rho} \right) \right) \right]^{p_{k,l}} = \infty \quad (t, \rho > 0). \tag{2.3.6}
\]

Proof. Let \(\Lambda^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, p, q] \subseteq \chi^2[\hat{c}, \Delta^m, u, p, q] \). Suppose that equation (2.3.6) does not hold. Therefore there is a number \(t_0 > 0 \) and an index sequence \((\mu_i \gamma_i)\) such that

\[
\frac{1}{\mu_i \gamma_i} \sum_{k,l=1}^{\mu_i \gamma_i} u_{k,l} \left[M_{k,l} \left(q \left(\frac{t_0}{\rho} \right) \right) \right]^{p_{k,l}} \leq N < \infty, \quad i = 1, 2, \ldots. \tag{2.3.7}
\]

Define the sequence \(x = (x_{k,l}) \) by

\[
(x_{k,l}) = \begin{cases}
t_0, & \text{if } 1 \leq k, l \leq \mu_i \gamma_i, \ i = 1, 2, \ldots \\
0, & \text{if } k, l > \mu_i \gamma_i
\end{cases}
\]

Thus by equation (2.3.7), \(x \in \Lambda^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, p, q] \), but \(x \notin \chi^2[\hat{c}, \Delta^m, u, p, q] \). Hence (2.3.6) must hold.

Conversely, let equation (2.3.6) hold. If \(x \in \Lambda^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, p, q] \), then for each \(s \) and \(\mu^\gamma \)

\[
\frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{(k+l)!|\Delta^m x_{k+s,l+s}|^{\frac{1}{k+s+l}}}{} \right) \right) \right]^{p_{k,l}} \leq N < \infty. \tag{2.3.8}
\]

Suppose that \(x \notin \chi^2[\hat{c}, \Delta^m, u, p, q] \). Then for some number \(\epsilon_0 > 0 \) there is a number \(s_0 \) and index \(\mu_0 \gamma_0 \)

\[
((k+l)!|\Delta^m x_{k+s,l+s}|)^{\frac{1}{k+s+l}} \geq \epsilon_0, \quad \text{for } s \geq s_0.
\]

Therefore

\[
\begin{align*}
&u_{k,l} \left[M_{k,l} \left(q \left(\frac{\epsilon_0}{\rho} \right) \right) \right]^{p_{k,l}} \leq u_{k,l} \left[M_{k,l} \left(q \left(\frac{(k+l)!|\Delta^m x_{k+s,l+s}|^{\frac{1}{k+s+l}}}{} \right) \right) \right]^{p_{k,l}} \\
&\text{and hence for each } k, l \text{ and } s, \text{ we get}
\end{align*}
\]

\[
\frac{1}{\mu^\gamma} \sum_{k,l=1}^{\mu^\gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{\epsilon_0}{\rho} \right) \right) \right]^{p_{k,l}} \leq N < \infty,
\]

for some \(N > 0 \), clearly equation (2.3.8) contradicts equation (2.3.6). Hence \(\Lambda^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, p, q] \subseteq \chi^2[\hat{c}, \Delta^m, u, p, q] \). This completes the proof.

Theorem 2.3.9 Let \(1 \leq p_{k,l} \leq \sup_{k,l} p_{k,l} < \infty \). The inclusion

\[
\Lambda^2[\hat{c}, \Delta^m, u, p, q] \subseteq \chi^2_{\mathcal{M}}[\hat{c}, \Delta^m, u, p, q]
\]
hold if and only if

\[
\lim_{\mu \gamma \to \infty} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{t}{\rho} \right) \right) \right]^{p_{k,l}} = 0 \quad (t, \rho > 0). \quad (2.3.9)
\]

Proof. Let \(\Lambda^2[\hat{c}, \Delta^m, u, p, q] \subseteq \chi^2_M[\hat{c}, \Delta^m, u, p, q] \). Suppose that equation (2.3.9) does not hold. Therefore there is a number \(t_0 > 0 \).

\[
\lim_{\mu \gamma \to \infty} \frac{1}{\mu \gamma_i} \sum_{k,l=1}^{\mu \gamma_i} u_{k,l} \left[M_{k,l} \left(q \left(\frac{t_0}{\rho} \right) \right) \right]^{p_{k,l}} = L \neq 0. \quad (2.3.10)
\]

Define the sequence \(x = (x_{k,l}) \) by

\[
((k+l)!x_{k,l})^\frac{1}{k+l} = t_0 \sum_{v=0}^{k,l-\eta} (-1)^v \left(\gamma + (k,l) - v - 1 \over (k,l) - v \right)
\]

for \(k, l = 1, 2, \cdots \). Thus by equation (2.3.10), \(x \in \chi^2_M[\hat{c}, \Delta^m, u, p, q] \), but \(x \notin \Lambda^2[\hat{c}, \Delta^m, u, p, q] \). Hence equation (2.3.9) must hold.

Conversely, let equation (2.3.9) hold and \(x \in \Lambda^2[\hat{c}, \Delta^m, u, p, q] \), then for every \(m, n \) and \(s \)

\[
((k+l)!|\Delta^m x_{k+s,l+s}|)^\frac{1}{k+l} \leq N < \infty.
\]

Therefore

\[
u_{k,l} \left[M_{k,l} \left(q \left(\frac{(k+l)!|\Delta^m x_{k+s,l+s}|^\frac{1}{k+l}}{\rho} \right) \right) \right]^{p_{k,l}} \leq u_{k,l} \left[M_{k,l} \left(\frac{N}{\rho} \right) \right]^{p_{k,l}}
\]

and

\[
\frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{(k+l)!|\Delta^m x_{k+s,l+s}|^\frac{1}{k+l}}{\rho} \right) \right) \right]^{p_{k,l}} \leq \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(\frac{N}{\rho} \right) \right]^{p_{k,l}} = 0 \quad \text{by equation (2.3.9)}.
\]

Hence \(x = (x_{k,l}) \in \chi^2_M[\hat{c}, \Delta^m, u, p, q] \). This completes the proof.

Theorem 2.3.10 The space \(\chi^2_M[\hat{c}, \Delta^m, u, p, q] \) is solid.

Proof. Let \(x = (x_{k,l}) \in \chi^2_M[\hat{c}, \Delta^m, u, p, q] \) and \((\alpha_{k,l}) \) be a sequence of scalars such that \(|\alpha_{k,l}|^\frac{1}{k+l} \leq 1 \) for all \(k, l \in \mathbb{N} \). Then
\[
\lim_{\mu \gamma \to \infty} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m x_{k+s,l+s}|^{1/\rho})}{\rho} \right) \right) \right]^{p_{k,l}} \\
\leq \lim_{\mu \gamma \to \infty} \frac{1}{\mu \gamma} \sum_{k,l=1}^{\mu \gamma} u_{k,l} \left[M_{k,l} \left(q \left(\frac{((k + l)!|\Delta^m x_{k+s,l+s}|^{1/\rho})}{\rho} \right) \right) \right]^{p_{k,l}}
\]

for all \(k, l \in \mathbb{N} \). Hence \((\alpha_{k,l}x_{k,l}) \in \chi^2_M[\hat{c}, \Delta^m, u, p, q] \) for all sequences of scalars \(\alpha_{k,l} \) with \(|\alpha_{k,l}| \leq 1 \) for all \(k, l \in \mathbb{N} \) whenever \(x_{k,l} \in \chi^2_M[\hat{c}, \Delta^m, u, p, q] \).

Theorem 2.3.11 The space \(\chi^2_M[\hat{c}, \Delta^m, u, p, q] \) is monotone.

Proof. It is obvious.