अध्याय – 4

जलीय आकारमितीय विश्लेषण

(Fluvial Morphometry Analysis)
जलीय आकारमितिय विश्लेषण

4- (Fluvial Morphometry Analysis)

4:1. जलीय आकारमितिय (Fluvial Morphometry):

जलीय अपरद्वालक स्थल रूपों के ज्यामितिय मापन पूर्व विश्लेषण को जलीय आकारमितिय में सम्मिलित किया जाता है; इसके अन्तर्गत प्रवाह-बेसिन के आकारमितिय पहलुओं का अध्ययन किया जाता है। वर्तमान भू-आकारिकी में जलीय अपरद्वालक स्थल रूपों के ज्यामितिय चर्चण का प्रचलन सबूतिक हो गया है। इसके लिए एक श्रेणी इकाई का चयन स्थलरूपों के आकार समन्वयी आंकते प्राप्त किये जाते हैं तथा उनका संगठन किया जाता है। शोल्ड (1969) इस उद्देश्य के लिए, फेनमन (1914) ने भौतिक प्रतिबिंबों का चयन किया आगे चलकर कुछ विद्वानों ने इस क्षेत्रीय इकाई के चयन का आधार भौतिक अनुकूल बनाया ज्यूसरिज (1932), सैजर्ना (1969) तथा स्टेरोकेर डेविस ने प्रवाह बेसिन को क्षेत्रीय इकाई के रूप में व्यापक किया। डेविस (1899) के अनुसार “सामान्य रूप में नदियाँ किसी पत्ती की शिखरों होती है व्यापक रूप में पूर्ण पत्ती होती है”। हार्टन (1945) ने प्रवाह बेसिन को एक पूर्ण भवानुकूल इकाई का रूप प्रदान किया और स्ट्रोल (1945) तथा शोल्ड (1964) ने उसका सम्बन्ध निर्देशित किया।

प्रवाह-बेसिन की बाह्य सीमा को प्रवाह बेसिन-परिमिति (Perimeter of Drainage basin) कहते हैं। इस तरह प्रवाह बेसिन भ्रातन्त्रे। के लघु क्षेत्रों को प्रदर्शित करती है, जिसके अन्तर्गत आधारभूत जलवायु परिणामों का मापन तथा
स्थलरूपों का चरण एवं व्याख्या की जाती है। किसी भी प्रदेश में जहाँ जलीय प्रक्रियाओं ने भौगोलिक स्वरूप को पूर्णता: प्रभावित किया है वहाँ निर्दिष्ट रूप से सरिताओं की स्थिति, उनके मध्य की दूरी और संख्या ने महत्वपूर्ण भावनात्मक प्राचारों के रूप में कार्य किया है। प्रवाह जल की तीन विशेषताएँ यथा अपवाह धाग, प्रवाह-गठन, सरिता चार्मरता अपनी वर्तमानता परवर्तन के समानेव भ्रमण की प्रति प्रवाह होता है तथा किसी भी प्रदेश के अपरदन और पर्याय सूचकांक इन्हें के कार्यों के प्रति प्रवाह है। अपवाह-चन्दन, प्रवाह गठन और सरिता-चार्मरता को भूगर्भिक संरचना, भूपृष्ठीय स्वरूप, जलवायुविभिन्न तत्त्व विशेषत: वर्षा, सूर्य तल प्रवाह आदि प्रभावित एवं निर्देशित करते हैं।

4:2 प्रवाह गठन (Drainage Texture) :-

प्रवाह-गठन एक महत्वपूर्ण आकारात्मक कारक है। जब सरिताओं का वितरण अत्यधिक दूर-दूर होता है तो उसे स्थूल-गठन कहते हैं। प्रायः निम्न प्रवाह धाग बाली बेसिन स्थूल-गठन बाली होती है इस तरह जब सरिताओं की दूरी मध्यम प्रकार की होती है तो उसे मध्यम-गठन कहते हैं। जब वितरण चन्दन होता है, अथवा जब सरिताओं अत्यधिक पास-पास होती है तो उसे सूक्ष्म-गठन कहते हैं। निश्चय ही प्रवाह-चन्दन तथा प्रवाह-गठन पर रूढ़ प्रकार, वर्षा का जल तथा उसके नीचे रिसाव का स्वभाव तथा वनस्पति की उपस्थिति या अनुपस्थिति का प्रभाव होता है। प्रवाह-बेसिन में सरिता के बीच की दूरी को प्रवाह गठन कहते हैं। हार्टन (1945) ने बताया कि प्रवाह-गठन प्रस्तुत इकाइयों के अंतर्गत में निरंतर्रों की संख्या का उस्कर है, फिर्थ (1950) ने प्रवाह-गठन के स्थान पर गठन-अनुपात का प्रयोग किया, इसीसे सरिता की समीपता के विश्लेषण हेतु निम्न सूत्रों का प्रयोग किया।
\[Tr = \frac{N}{P} \]

जहाँ, \(Tr \) = गठन-अनुपात

\(N \) = वैसिन में अधिकतम वक्रता एवं कटानों वाली समाक्षेप रेखा के मोड़े एवं कटानों की संख्या

\(P \) = वैसिन परिधि

1976 के पूर्व भारत में प्रवाह-तन्त्र का प्रयोग भ्रमणलक तथ्य के रूप में किया जाता रहा, परन्तु 1976, 1978 में सविन्द्र सिंह ने रॉची पठार का अध्ययन करते समय प्रवाह-गठन को एक पूँछक आकारितिक के रूप में किया। इन्होंने निम्नलिखित समीकरण को प्रस्तुत किया-

\[\text{प्रवाह गठन} \ (T) = \frac{1}{(t + p)/2} \]

जबकि \(l \) = एक मील की लम्बाई

\(t \) = एक वर्ग मील के घिन्ड में एक मील की लम्बाई में सरिताओं के कटानों की संख्या

\[(T_1) = \frac{(t_1 + t_2)/2}{\sqrt{2}} \]

जहाँ तर \(t_1 \) और \(t_2 \) = घिन्ड के दो विक्रणों के सहारे सरिताओं की कटन की संख्या

\[P = \frac{P_1 + P_2 + P_3 + P_4}{4} \]

जबकि \(P_1, P_2, P_3, P \) तथा \(P_4 \) घिन्ड के चारों भुजाओं के सहारे सरिताओं की कटन बिन्दुओं की संख्या।
उपर्युक्त समीकरण के आधार प्रवाह वेसिन को एक वर्ग मील (एक मील ×एक मील) के प्रिंड में विभक्त किया जाता है तथा प्रत्येक प्रिंड में प्रवाह गठन के मान को परिकलित किया जाता है। प्रवाह-गठन के अन्तर्गत 0-0.2 के अन्तर्गत अति निम्न प्रवाह गठन, 0.2-0.4 के अन्तर्गत सूक्ष्म प्रवाह-गठन, 0.4-0.6 के अन्तर्गत मध्यम प्रवाह गठन, 0.6-0.8 के अन्तर्गत स्थूल प्रवाह-गठन तथा 0.8-1.0 अति स्थूल प्रवाह-गठन के अन्तर्गत सम्मिलित है। प्रवाह गठन का मान 0 से 1 मील के बीच रहता है। परस्तु विभिन्न प्रिंड के मान को निम्न प्रवाह-गठन वर्गों में विभक्त किया जाता है।

4:2:1 प्रवाह-गठन श्रेणियाँ (Drainage texture categories) :-

प्रवाह-गठन ज्ञात करने हेतु अध्ययन क्षेत्र को 2.56 वर्ग किलोमीटर के प्रिंड में विभाजित किया गया है। प्रवाह-गठन का सम्बन्ध प्रत्येक इकाई क्षेत्र में सरिताओं की निकटता से की जाती है जिसकी गणना प्रवाह-चन्द्र तथा तुलना में अधिक सरलता एवं कम समय में की जा सकती है।

4:3 प्रवाह-चन्द्र (Drainage density) :-

प्रवाह-चन्द्र के अन्तर्गत सरिताओं की संख्या तथा वेसिन के क्षेत्रफल के बीच के सम्बन्ध का अध्ययन किया जाता है। किसी प्रवाह-वेसिन के सभी श्रेणियों की तथा सभी सरिताओं की लम्बाई का योग ज्ञात किया जाता है। इस योग को उस प्रवाह-वेसिन के सम्पूर्ण क्षेत्रफल से भाग देकर प्रवाह-चन्द्र ज्ञात किया जाता है।

सभी सरिताओं की लम्बाई का
प्रवाह-चन्द्र (Dd) =
प्रवाह वेसिन का क्षेत्रफल

[79]
किसी प्रवाह वेसिन के भ्याकृतिक विश्लेषण के लिए प्रवाह-घनत्व प्रमुख आकारमितिक कारक है क्योंकि इसका सम्बन्ध प्रवाह-जाल के गत्यात्मक रूप से होता है। जिनका प्रयोग प्रवाह-वेसिन के वर्गीकरण में यह महत्वपूर्ण भूमिका का निवाह करता है तथा जिनकी सहायता से क्षेत्रीय प्रकर्णों की व्याख्यात्मक प्रवाह-जाल में अस्थायी परिवर्तनों का आभास होता है,

\[Dd = \frac{EL_k}{AK} = Dd = \frac{1}{Au} \sum L_u = l_n \]

यहाँ पर ELK अथवा \(\sum L_u \) = एक वेसिन के अन्तर्गत समस्त सारिता खण्डों की लम्बाई

AK अथवा Au = एक वेसिन का क्षेत्रफल: हार्टन ने अपने इस नियम को 1945 में पुनः दोहराया और सारिता संख्या तथा लम्बाई के अपवाह-घनत्व की गणना करने हेतु जोड़ा -

\[Du = \frac{L_u R_\nu^{-1}}{Au} = \frac{R_\nu^{-1} - 1}{R_\nu^{-1} - 1} \]

जहाँ, Du = समस्त वेसिन की एक श्रेणी के अन्तर्गत अपवाह-घनत्व

\[L_1 = \text{समस्त श्रेणी सारिता खण्डों की लम्बाई} \]

\[R_\nu = \text{द्विशाखन अनुपात} \]

\[R_{\nu b} = \text{द्विशाखन अनुपात का लम्बाई अनुपात} \]

\[Au = \text{सम्पूर्ण वेसिन का क्षेत्रफल} \]

हार्टन के नियम के अनुसार सम्पूर्ण वेसिन का मूल्यांकन कर अपवाह-घनत्व प्राप्त होता है जो वेसिन में अपवाह-घनत्व के क्षेत्रीय वितरण की सम्यक व्याख्या
करने में असफल है। नदियों की संख्या व लम्बाई, मुख्य रूप से वर्षा की मात्रा पर आधारित होती है।

\[Dd = \frac{L}{A} \]

इस विधि के द्वारा प्राप्त मूल्य < -1 के अन्तर्गत अति निम्न प्रवाह-घनत्व 1-2 के अन्तर्गत निम्न प्रवाह-घनत्व, 2-3 मध्यम प्रवाह-घनत्व, 3-4 के अन्तर्गत उच्च प्रवाह-घनत्व तथा 4-> के अन्तर्गत अति उच्च प्रवाह-घनत्व सम्मिलित है।

4:3:1 प्रवाह घनत्व श्रेणियाँ (Drainage density Categories) :-

अध्ययन में प्रवाह-घनत्व ज्ञात करने के लिए सभी सरिताओं की लम्बाई के योग में प्रवाह वेशिन के क्षेत्रफल के भाग देने से प्रवाह-घनत्व ज्ञात होता है। इस प्रकार प्राप्त प्रवाह-घनत्व के आंकड़े को 5 श्रेणियों में विभाजित किया गया है :-

सारणी संख्या – IV.1

लीलाजन वेशिन के सरिता घनत्व का वितरण

Distribution of drainage density of Lilajan basin :-

अध्ययन क्षेत्र में सरिता घनत्व के वितरण को निम्नलिखित तालिका द्वारा दर्शाया गया है।

<table>
<thead>
<tr>
<th>Drainage Density</th>
<th>Symbole</th>
<th>Frequency</th>
<th>Frequency</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kms²</td>
<td>%</td>
<td>Cum%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< -1</td>
<td>Ddel</td>
<td>190</td>
<td>486.40</td>
<td>28.40</td>
</tr>
<tr>
<td>1-2</td>
<td>Del</td>
<td>163</td>
<td>417.28</td>
<td>24.37</td>
</tr>
<tr>
<td>2-3</td>
<td>Ddm</td>
<td>95</td>
<td>243.20</td>
<td>14.21</td>
</tr>
<tr>
<td>3-4</td>
<td>Ddh</td>
<td>150</td>
<td>384.00</td>
<td>22.42</td>
</tr>
<tr>
<td>4-></td>
<td>Dvh</td>
<td>71</td>
<td>181.76</td>
<td>10.71</td>
</tr>
<tr>
<td>669</td>
<td>1712.64</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean : 0.79, Median : 2.94, Mode: 122.01
तालिका संख्या IV-3-1 के अध्ययन के अनुसार अध्ययन क्षेत्र का अधक्ष भाग अति निम्न प्रवाह घनत्व के अन्तर्गत 28.40% अर्थात 486.40 वर्ग फिल्मिटर तथा अति उच्च प्रवाह-घनत्व के अन्तर्गत 10.71% अर्थात 181.76 वर्ग फिल्मिटर के अन्तर्गत है। निम्न प्रवाह-घनत्व के अन्तर्गत 24.36% अर्थात 417.28 वर्ग फिल्मिटर, मध्य प्रवाह-घनत्व के अन्तर्गत 14.20% अर्थात 243.20 वर्ग फिल्मिटर तथा उच्च प्रवाह-घनत्व के अन्तर्गत 22.42% अर्थात 388.00 वर्ग फिल्मिटर भू-भाग समिलित है। सांख्यिकीय विधि की गणना से प्रवाह-घनत्व का सामान्य माध्य 0.79 माध्यिका 2.94 तथा बहुल 122.50 ज्ञात किया गया है अध्ययन क्षेत्र में सरिता घनत्व के क्षेत्रीय वितरण पर कई कारकों का प्रभाव है, जैस-वर्षण प्रभाव शीलता, भू-वैज्ञानिक संरचना मुख्य रूप से शैल प्रकार चर्म का धरातल में अध्ययन क्षेत्र के परिचमी पाट क्षेत्र में प्रवाहित होने वाली सरिताओं का तथा जाम वेसिन के प्रवाह-घनत्व पर टर्शियरी युग में पाट-क्षेत्र के उद्धार (अतः न्योनेव), कगार-ढाल, औसत ढाल, वनस्पति तथा स्थल प्रवाह की लम्बाई का प्रभाव दृष्टिकोण है, ग्रैंडाइल, नीस, शैल प्रकार नेशन, अम्बार के वेसिन के प्रवाह-घनत्व को नियंत्रित किया गया है।
4:3:2 प्रवाह घनत्व श्रेणियों का क्षेत्रीय वितरण एवं निरपेक्ष उच्चावच के साथ सह-सम्बन्ध:
तालिका संख्या IV-4 से प्रवाह-घनत्व एवं निरपेक्ष उच्चावच के बीच सह-सम्बन्ध को दर्शाया गया है। काल-पिरवासन के सूत्र के अनुसार अध्ययन क्षेत्र के प्रवाह-घनत्व एवं निरपेक्ष उच्चावच के बीच सह-सम्बन्ध धनात्मक +0.80 है।
4:3:3 अति निम्न प्रवाह घनत्व (Ddel < - 1)

अध्ययन क्षेत्र में प्रवाह घनत्व के (<-1) के अन्तर्गत 486.40 वर्ग किलोमीटर अर्थात् 28.40% भू-भाग सम्मिलित है। जो सम्पूर्ण बेसिन का वृहदतम भाग है तालिका संख्या (IV-3-IV-4) प्रवाह घनत्व एवं निरपेक्ष उच्चावली के बीच सह-सम्बन्ध को दर्शाता है इसके अनुसार 150 मीटर ऊँचाई के अन्तर्गत 8.42% क्षेत्र 150-300 मीटर ऊँचाई के अन्तर्गत 65.26% क्षेत्र, 300-450 मीटर ऊँचाई 14.21% क्षेत्र तथा 450-600 मीटर ऊँचाई के अन्तर्गत 12.10% क्षेत्र सम्मिलित है। अति निम्न प्रवाह-चन्द्र श्रेणी के अन्तर्गत अध्ययन क्षेत्र का उत्तर-पूर्व व मध्य का अधिकांश भाग है इसके अलावा उत्तर-पूर्व तथा पश्चिम दक्षिण में भी कुछ भाग सम्मिलित है। अति निम्न प्रवाह घनत्व के अन्तर्गत दोहरी उच्च भूमि (500 मीटर) कोवना सम्प्राय प्रदेश (200 मीटर), अमझर बेसिन प्रदेश (383 मीटर),
हृदर्गाण्ज गार्जिक प्रदेश (175 मीटर), मगध समतल प्रदेश (201 मीटर), बोधगया समतल प्रदेश (126 मीटर) चैता बेसिन प्रदेश (158 मीटर) तथा निचली लीलाजन बेसिन प्रदेश (118 मीटर) भू-भाग सम्मिलित है।

4.3.4 निम्न प्रवाह-घनत्व (Ddl 1-2)

अध्ययन क्षेत्र के अन्तर्गत निम्न प्रवाह-घनत्व (1-2), 24.36% अर्थात 417.28 वर्ग किलोमीटर स्थित है, जो सम्पूर्ण भू-भाग का दूसरा वृहद्दतम क्षेत्र है। प्रवाह-घनत्व एवं निरपेक्ष उच्चावध के बीच परस्पर सम्बन्ध समृद्ध तल से 150 मीटर ऊँचाई के अन्तर्गत 6.31%, 150-300 मीटर ऊँचाई के अन्तर्गत 60.12%, 300-450 मीटर ऊँचाई के अन्तर्गत 25.15%, 450-600 मीटर ऊँचाई के अन्तर्गत 8.5% तथा 600> मीटर सेंटीमीटर ऊँचाई के अन्तर्गत कोई भी भाग नहीं है।

प्रस्तुत अध्ययन क्षेत्र के निम्न प्रवाह घनत्व के अन्तर्गत वर्गीकृत समग्र प्रदेश (220 मीटर), जो भी उच्च भूमि प्रदेश (154 मीटर) सिद्धर्थम बेसिन प्रदेश (300 मीटर) दुधोर निम्न भूमि प्रदेश (401 मीटर), कुशा समतल प्रदेश (175 मीटर), भेद्धा समतल प्रदेश (152 मीटर), गोकुला बेसिन प्रदेश (150 मीटर), बेघरा खड़ा क़ग़ार (543 मीटर) तथा सरडम समग्र प्रदेश (422 मीटर) भू-भाग सम्मिलित है।

4.3.5 मध्यम प्रवाह-घनत्व (Ddm 2-3):

अध्ययन क्षेत्र के अन्तर्गत मध्यम प्रभाव-घनत्व (2-3) 14.20% अर्थात 243.20 वर्ग किलोमीटर तक स्थित है जो सम्पूर्ण भाग का चौथा स्थान है। प्रवाह-घनत्व तथा निरपेक्ष उच्चावध के अन्तर्गत सह-समबन्ध स्थापित करता है। मध्यम प्रवाह घनत्व के अन्तर्गत 0-150 मीटर ऊँचाई के अन्तर्गत 44.21%,
300-450 मीटर ऊँचाई के अन्तर्गत 34.73% तथा 450-600 मीटर ऊँचाई के अन्तर्गत 18.94% भू-भाग का विस्तार पाया जाता है। इसके अन्तर्गत हेक बेसिन (400 मीटर), जाम बेसिन (400-मीटर) तथा सरहद उच्चभूमि (461-मीटर) अहूरी उच्च भूमि (400-मीटर) आदि समिलित है।

4:3:6 उच्च प्रवाह-घनत्व (Ddh-3-4)

अध्ययन क्षेत्र के अन्तर्गत 3-4 उच्च प्रवाह-घनत्व सम्पूर्ण बेसिन का 384.00 वर्ग किलोमीटर अर्थात 22.421% दृष्टिगत है। जो सम्पूर्ण भाग का तीसरा स्थान है जो प्रवाह-घनत्व के अन्तर्गत >7150 मीटर ऊँचाई के 0.66%, 150-300 मीटर ऊँचाई के अन्तर्गत 40.66%, 300-450 मीटर ऊँचाई के अन्तर्गत 44.66% तथा 450-600 मीटर ऊँचाई के अन्तर्गत 14.00% समिलित है। अध्ययन क्षेत्र के अन्तर्गत सिमिया उच्च भूमि (560-मीटर), चतरा उच्च भूमि प्रदेश (469 मीटर) गोण्या पहाड़ (387 मीटर), चकला पहाड़ (150-मीटर) जोरी कलान गार्ज प्रदेश (40-मीटर), घनगन समर प्रदेश (475 मीटर) कथौतिया समतल प्रदेश (200 मीटर), देखनय समर प्रदेश (200 मीटर), मेहर पहाड़ (165 मीटर) तथा बरहती समतल प्रदेश (171-मीटर) आदि क्षेत्र का विस्तार स्थित है।

4:3:7 अविच्छेद चतुर्वेदी (Ddv. 4>)

अति उच्च प्रवाह घनत्व के अन्तर्गत (4>) सम्पूर्ण अध्ययन क्षेत्र 181 वर्ग किलोमीटर अर्थात 10.71% को दर्शाता है। यह क्षेत्र का सीमित भाग है। इसके अन्तर्गत अति उच्च प्रवाह घनत्व तथा निरपेक्ष उच्चावच के मध्य सह-सम्बन्ध स्थापित है, अति उच्च प्रवाह घनत्व के अन्तर्गत 150-300 मीटर ऊँचाई के अन्तर्गत 15.49% तथा 300-450 मीटर ऊँचाई के अन्तर्गत 73.23%, 450-600 वर्ग किलोमीटर
मीटर ऊँचाई के अन्तर्गत 9.85% तथा 600> मीटर ऊँचाई के अन्तर्गत 1.40% तक विस्तृत है। इसके अन्तर्गत लोबगा खड़ा कंगार (680 मीटर), कुल्लू सम्प्राय प्रदेश (516 मीटर), बनगढ़िया उच्च भूमि (475 मीटर), (रुपुढ सम्प्राय प्रदेश (503 मीटर), तथा जोगरी पहाड़ (544 मीटर) आदि भाग सम्मिलित है।

4.4 सरिता-बार्म्बारता(Drainage frequency)

सरिता-बार्म्बारता अध्ययन के अन्तर्गत एक हाइ क्षेत्र के समस्त सरिताओं की संख्या का गणना को सम्मिलित किया जाता है। (स्टूबर, चो 1964), जिसका सर्वप्रथम प्रयोग हार्टन-(1932 और 1945), ने प्रमुख आकारभित्रीय प्राचार के रूप में किया था तथा इसकी गणना के लिए निम्नलिखित सूत्रों का प्रयोग किया था।

\[f = \frac{\xi}{1=1Nu} \]

जहाँ \(f = \) सरिता बार्म्बारता

\[K = \] बेसिन को श्रेणी

\[\Sigma Nu = \] बेसिन के अन्तर्गत समूही श्रेणी के सरिता खण्डों की संख्या

\[A_k = \] बेसिन का श्रेणीगत शेषफल

किसी भी बेसिन की सरिता-बार्म्बारता के अध्ययन हेतु इकाई क्षेत्र पर सरिता संख्या का गणना करने आवश्यक हो जाती है। मैल्टन-(1958) ने अपवाह-जाल के विकास का प्रारूप बनाया तथा उसके आधार पर अपवाह-जाल और सरिता-बार्म्बारता सह सम्बन्ध स्थापित किया। मैल्टन-(1958) ने पुनः \(f/D^2 \) अनुपात के अनुसार स्वतंत्र चर के रूप में सरिता-बार्म्बारता के परिकलन करने
का प्रयास किया, सरिता-बारम्बारताप्रवाह चतुरथ, सरिता लम्बाई, सरिता क्षेत्रफल और सरिता उत्पाव नियमित करते हैं।

4:4:1 सरिता-बारम्बारता की श्रेणियाँ-(Categories of Drainage frequency):-

अध्ययन क्षेत्र के अन्तर्गत न्यूनतम 2.56 वर्ग किमीटर के ग्रिड में विभाजित है। ग्रिड की चारों ओर की कटाऊं संख्या /पृष्ठ क्षेत्रफल के द्वारा सरिता-बारम्बारता की गणना की जाती है इसे चार वर्गों में विभाजित किया गया है सरिता-बारम्बारता के अन्तर्गत Less than 2 के अन्तर्गत निम्न सरिता-बारम्बारता (FI), 3-4 के अन्तर्गत मध्यम सरिता-बारम्बारता(Fm), 4-5 के अन्तर्गत उच्च सरिता-बारम्बारता (Fh) तथा 7> के अन्तर्गत अति उच्च सरिता-बारम्बारता(Fvh) सम्मिलित है।

वालिका: IV.3

<table>
<thead>
<tr>
<th>Drainage frequency</th>
<th>Symbol</th>
<th>frequency</th>
<th>Km</th>
<th>(Km)%</th>
<th>Cum %</th>
</tr>
</thead>
<tbody>
<tr>
<td><-2</td>
<td>Fp</td>
<td>295</td>
<td>755.20</td>
<td>44.01</td>
<td>44.01</td>
</tr>
<tr>
<td>2-4</td>
<td>Fm</td>
<td>167</td>
<td>427.52</td>
<td>24.95</td>
<td>69.06</td>
</tr>
<tr>
<td>5-6</td>
<td>Fh</td>
<td>149</td>
<td>381.44</td>
<td>22.27</td>
<td>91.33</td>
</tr>
<tr>
<td>7></td>
<td>Fvh</td>
<td>58</td>
<td>148.48</td>
<td>8.67</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>669</td>
<td>1712.64</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

mean: 2.31, median: 2.25, Modo: 149.42

अध्ययन में निम्न सरिता-बारम्बारता44.095% अर्थात 755.20 वर्ग किलोमीटर जो कि सम्पूर्ण क्षेत्र का बृहदतम क्षेत्र है, तथा अति उच्च सरिता-बारम्बारता के अन्तर्गत 8.66% अर्थात 148.48 वर्ग किलोमीटर जो सम्पूर्ण भाग का सीमित क्षेत्र
है। नीन सरिता-बार्बारता के अन्तर्गत 755.20 वर्ग किलोमीटर अर्थात 44.09%, मध्य सरिता-बार्बारता के अन्तर्गत 427.52 वर्ग किलोमीटर अर्थात 24.96%, उच्च सरिता-बार्बारता के अन्तर्गत 381.44 वर्ग किलोमीटर अर्थात 22.27% तथा अति उच्च सरिता-बार्बारता के अन्तर्गत 148.48 वर्ग किलोमीटर अर्थात 8.66% दृष्टिगोचर है, साहित्यिक गणना हेतु सरिता-बार्बारता का समान्तर माध्य:- 2.31, माध्यिका: 2.25 तथा बहुलक 149.42 ज्ञात किया गया है।

4:4:2 सरिता-बार्बारता क्षेत्रों का क्षेत्रीय वितरण एवं निरपेक्ष उच्चावल के साथ सह-सम्बन्ध:— (Regional distribution of stream frequency orders and co-relation with absolute relief)

अध्ययन क्षेत्र में काल परिपस्ना द्वारा सरिता-बार्बारता एवं निरपेक्ष उच्चावल के मध्य सह-सम्बन्ध का दर्शाया गया है। अध्ययन क्षेत्र में सरिता-बार्बारता एवं निरपेक्ष उच्चावल के मध्य घनात्मक सह-सम्बन्ध +0.39 है।

तालिका IV.4

Co-relation between Drainage frequency and Absolute Relief of Lilajan basin:

<table>
<thead>
<tr>
<th>Absolute Zone (M)</th>
<th><2 (Fp) f %</th>
<th>3 - 4 (Fm) f %</th>
<th>5 - 6 (Fh) f %</th>
<th>7 - 7 (Fh) f %</th>
<th>Total Net f %</th>
</tr>
</thead>
<tbody>
<tr>
<td><150</td>
<td>29 9.83</td>
<td>00 -</td>
<td>00 -</td>
<td>00 -</td>
<td>29 4.33</td>
</tr>
<tr>
<td>150-300</td>
<td>206 69.83</td>
<td>61 36.52</td>
<td>53 35.57</td>
<td>16 2758</td>
<td>336 50.22</td>
</tr>
<tr>
<td>300-450</td>
<td>45 15.25</td>
<td>70 41.91</td>
<td>82 55.03</td>
<td>23 39.65</td>
<td>220 32.88</td>
</tr>
<tr>
<td>450-600</td>
<td>15 5.08</td>
<td>36 21.55</td>
<td>14 9.39</td>
<td>19 32.75</td>
<td>83 12.40</td>
</tr>
<tr>
<td>600-700</td>
<td>00 -</td>
<td>00 -</td>
<td>00 -</td>
<td>1 0.14</td>
<td>1 0.14</td>
</tr>
<tr>
<td>total</td>
<td>295 100</td>
<td>167 100</td>
<td>149 100</td>
<td>58 100</td>
<td>669 0.14</td>
</tr>
<tr>
<td>%</td>
<td>44.09</td>
<td>24.96</td>
<td>22.27</td>
<td>8.66</td>
<td>100 100</td>
</tr>
</tbody>
</table>
4:4:2:1 निम्न सरिता-बारेम्बारता-(Less than - 2 Fl)

निम्न सरिता-बारेम्बारता के अन्तर्गत 44.09% अर्थात 755.20 वर्ग फिलोमीटर दृष्टिगत है प्रवाह-सरिता-बारेम्बारता एवं निरपेक्ष उच्चावश के मध्य सह-सम्बन्ध को दर्शाता है। यह सम्पूर्ण क्षेत्र का चूहदत्त क्षेत्र है। निम्न सरिता-बारेम्बारताओं के अन्तर्गत 150 मीटर ऊँचाई के अन्तर्गत 9.83% निम्न तथा सरिता-बारेम्बारताओं के अन्तर्गत 150-300 मीटर के ऊँचाई के अन्तर्गत 39.83%, 300-450 मीटर ऊँचाई के अन्तर्गत 15.25% तथा 450-600 मीटर के अन्तर्गत 5.08% है इसके अन्तर्गत वही ऊँचा भूभूमि (500मीटर), कुछुलु समस्थाप प्रदेश (516मीटर), आहरी ऊँचा भूभूमि प्रदेश (400मीटर) कोवना समस्थाप प्रदेश (200मीटर), हंटरंग गार्ज (175मीटर), डोबी ऊँचा भूभूमि प्रदेश (154मीटर), बर्जी समस्थाप प्रदेश (220मीटर), मगध समस्थाप प्रदेश (201मीटर), भोज गया समस्थाप प्रदेश (126मीटर), कुछा प्रदेश (175मीटर), कठीवां समस्थाप प्रदेश (200मीटर), भंदुरा समस्थाप प्रदेश (152मीटर), धेवन्धपुर समस्थाप प्रदेश (200मीटर), गोखला बेसिन प्रदेश (150मीटर), मैहर पहाड़ (165मीटर), चरहटी समस्थाप प्रदेश (171मीटर), चैया बेसिन प्रदेश (158मीटर), निचली लिलाजन बेसिन प्रदेश (118मीटर), चकला पहाड़ (150मीटर) आदि सम्बन्धित है।

4:4:2:2 मध्यम सरिता-बारेम्बारता-(Fm - 3 - 4)

अध्ययन के अन्तर्गत मध्य सरिता-वारेम्बारता का क्षेत्र 24.96% अर्थात् 427.52 वर्ग फिलोमीटर क्षेत्र सम्बन्धित है जो सम्पूर्ण बेसिन में द्वितीय स्थान रखता है। मध्यम सरिता-बारेम्बारता एवं निरपेक्ष उच्चावश के मध्य सह-सम्बन्ध स्थापित करता है। मध्यम सरिता-बारेम्बारता के अन्तर्गत 300 मीटर ऊँचाई के अन्तर्गत
36.52%, 300-450 मीटर ऊँचाई के अन्तरगत 41.91%, तथा 450-600 मीटर ऊँचाई के अन्तरगत 21.55% सममिलित है। इसके अन्तरगत-सिमरिया उच्च भूमि (560मीटर), वेपा कागार प्रदेश (543मीटर), चतरा उच्च भूमि (469मीटर), सिन्दुरी बेसिन प्रदेश (300 मीटर), अमझर बेसिन प्रदेश (383मीटर), सरडम सम्राय प्रदेश (422मीटर), तथा जोरिक कलान गार्ज प्रदेश (400मीटर) आदि सममिलित है।

4:4:2:3 उच्च सरिता-बाराबारता-(Dfh - 5 - 6)

ध्यान केन्द्र के अन्तरगत उच्च सरिता-बाराबारता का क्षेत्रफल 22.27% अर्थात 381.44 वर्ग किलोमीटर क्षेत्र सममिलित है, जो सम्पूर्ण बेसिन क्षेत्र का तृतीय स्थान है। उच्च सरिता-बाराबारता एवं निरपेक्ष उच्चावच के मध्य सह-संबंध को दर्शाता है। उच्च सरिता-बाराबारता के अन्तरगत 150 मीटर - 300 मीटर ऊँचाई के अन्तरगत 35.57%, 300 मीटर-450 मीटर ऊँचाई के अन्तरगत 9.39% सममिलित है। इसके अन्तरगत हेसु बेसिन प्रदेश (400मीटर), वेपातरी उच्च भूमि (475मीटर), सरड हाव उच्च भूमि (461मीटर), जोगनी पहाड़ी (544मीटर), गोन्चा पहाड़ी (387मीटर), दुधौर निम्न भूमि प्रदेश (401मीटर) आदि क्षेत्र सममिलित है।

4:4:2:4 अति उच्च सरिता-बाराबारता (Fvh - 7->)

ध्यान केन्द्र में अति उच्च सरिता-बाराबारता का क्षेत्रफल 8.66% अर्थात 148.48 वर्ग किलोमीटर है, जो सम्पूर्ण बेसिन क्षेत्र का सीमित भाग है। सरिता-बाराबारता तथा निरपेक्ष उच्चावच के मध्य सह-संबन्ध स्थापित किया जाये तो अति उच्च सरिता-बाराबारता के अन्तरगत अर्थात 150 मीटर - 300 मीटर ऊँचाई के अन्तरगत 27.58%, 300-450 मीटर ऊँचाई के अन्तरगत 39.65% तथा 450 मीटर-600 मीटर ऊँचाई के अन्तरगत 32.75% भू-भाग सममिलित है।
प्रकार अध्ययन क्षेत्र का लोचना खड़ा किनारा (680 मीटर), रुपुद सम्प्राय प्रदेश (503 मीटर), जाम बेसिन प्रदेश (404 मीटर), आदि क्षेत्र समाहित है।

4.5- प्रवाह-प्रतिरूप (Drainage Pattern) :-

प्रवाह-प्रतिरूप को अन्तर्गत किसी क्षेत्र की नदियों एवं उनकी सहायक नदियों के क्रम का अध्ययन किया जाता है। प्रवाह-प्रणाली या अपवाह तन्त्र के विषय के अलग-अलग विचार भाषाएँ है। विवाद केवल प्रवाह-प्रणाली में समीक्षित किए जाने वाले नदियों के क्षेत्र पर है। कुछ विद्वानों का कहना है कि एक अपवाह तन्त्र (आगे केवल प्रवाह-प्रणाली की नामांकन का ही प्रयोग किया गया) में स्थान विशेष को समीक्षित करना चाहिए। प्रवाह-प्रणाली एक विशेष प्रकार की व्यवस्था होती है जिसका निर्माण एक नदी की भाराओं के समीक्षित रूप में होता है।

एक नदी एवं सहायक नदियों की भाराओं के क्रम को ध्यानबंदी ‘‘प्रवाह प्रणाली’’ की संज्ञा प्रदान की जाती है। उन्होंने बताया यह नतामा कि कई नदियों के स्थान संबंधी, सम्बन्धी का भी अध्ययन किया जाता है। जब किसी नदी विशेष की प्रवाह-प्रणाली का अध्ययन न करके कई नदियों के स्थान सम्बन्धी, सम्बन्धी का अध्ययन को प्रवाह व्यवस्था की संज्ञा प्रदान की गयी है। नदियों के प्रवाह-क्रम आधार अर्थात् धाराओं के क्रम को प्रवाह-प्रणाली कहा जाता है।

सामान्यतः प्रतिवर्ष 36,000 घनमील जल वर्षा के रूप में भू-तल पर गिरता है परन्तु इसका केवल 6520 घनमील जल ही नदियों आदि द्वारा सागर में आ पाता है। स्थायी जलघारा को सतत चाहिए भी कहा जाता है क्योंकि इनमें जल का बहाव वर्षा भर रहता है। आंतरिक जलघाराओं को मौसमी भी कहा जा सकता
है क्योंकि ये साल भर प्रवाहित होने वाली न होकर वर्ष के कुछ खास में ही प्रवाहित होती है और रोप समय में शुष्क हो जाती है। जिन प्रदेशों में मौसमी वृद्धि होती है या मौसमी हिमपात होती है प्रमुखतः रूप से अर्द्धशंक प्रदेशों में पायी जाती है। इन्हें दो वर्गों में विभाजित किया जा सकता है।

(1) जल स्रोत-पोषित आन्तरिक जलधाराएँ - इसका समस्त भूमिगत जल से होता है। तथा

(2) सलाह पोषित आन्तरिक जलधारा - जब जल धाराओं में जल की पूर्व सतह पर वर्षा के जल या हिम के पिघलने से प्राप्त जल प्राप्त होता है।

4:5:1 प्रवाह-प्रणाली के प्रकार (Type of Drainage Pattern) :-

उपयुक्त विवरणों से स्पष्ट है कि किसी भी स्थान की प्रवाह-प्रणाली में नदियों की स्थिति, उनकी संख्या तथा प्रवाह-मार्ग में वहाँ की स्थलीय बनावट (स्थल का ढाल, संरचनात्मक निर्यंत्रण, चट्टानों की कठोरता आदि) का अत्यधिक प्रभाव होता है। दूसरे शाखाओं में नदियों एवं उनकी शाखाओं का स्वभाव मुख्य रूप से वहाँ की स्थलीय बनावट की के अनुसार हुआ करता है। जैसे कि प्रत्येक स्थान की धारात्मक बनावट में पर्याप्त अन्तर होता है, तर: प्रवाह-प्रणाली के रूप में अन्तर होना अवश्य सम्भव है। किसी नदी विशेष के प्रवाह का प्रभाव भी अन्य नदियों के प्रवाह पर कभी-कभी महत्वपूर्ण होता है, यहाँ तक कि कभी-कभी एक नदी (सतिता-अपहरण द्वारा) अन्य नदियों को आत्मसात करके उनके प्रवाह-मार्ग को ही बदल देती है। यथाप्रचलित प्रत्येक स्थान की प्रवाह-प्रणाली में कुछ नवीन विशेषताएँ, अवश्य मिल जाती है तथा किसी भी दो स्थानों की
प्रवाह-प्रणाली एकदम एक सी नहीं होती है। तथापि उन्हें उनमें कुछ ऐसी सामान्य विशेषताएँ आवश्यक होती हैं, जिनके आधार पर उन्हें एक निर्दिष्ट प्रवाह-प्रणाली का रूप प्रदान किया जा सकता है। सामान्य तौर पर भू-पटल की प्रवाह-प्रणालियों को निम्न प्रकारों में विभाजित किया जा सकता है:

1. जालीनुमा प्रवाह प्रणाली
2. पादपाकार प्रवाह प्रणाली
3. आयताकार प्रवाह प्रणाली
4. अनुरूप जलधारा
5. अपकेन्द्री प्रवाह प्रणाली
6. वलयाकार प्रवाह प्रणाली

4:5:1:1 जालीनुमा प्रवाह-प्रणाली (Trellis drainage Pattern) :-

जालीनुमा प्रवाह-प्रणाली को स्वभावी अथवा स्वभाव अतिबधु प्रवाह-प्रणाली भी कहा जाता है क्योंकि इस प्रणाली के अन्तर्गत जलधाराएँ पूर्ण रूप से धरातलीय ढाल का अनुकरण करती है तथा इसके प्रवाह-मार्ग में परिवर्तन, ढाल में परिवर्तन के अनुसार पाना जाता है। इस प्रवाह-प्रणाली में नदियाँ एक रूप में आयताकार होती हैं, फलस्वरूप प्रमुख आयताकार प्रणाली के समान इसमें नदियाँ का क्रम, चट्टानों की धरातलीय ढाल के अनुसार होता है। इस प्रवाह-प्रणाली में नदियाँ एक ढाल के रूप में पैली होती हैं। जिसे प्रभावित करने वाले दो प्रमुख कारण हैं: धरातलीय भाग में प्रारंभिक अवतलित भाग (निम्न भाग गर्त) तथा ढाल का स्वभाव जैसे ही, कोई स्थल का भाग सतह से ऊपर उठता है, उस पर ऊपरी ढाल से निचले ढाल की ओर प्रवाहित होने वाले नदियों का विकास हो जाता है।

[93]
जालीतुमा प्रवाह-प्रणाली का विकास उद्घि गुमबद, ऊपर उठे नए ब्लाक पर्वत ऊँचे उठे तटीय मैदान तथा मोहडार पर्वतों के ऊपर होता है। अभ्यन क्षेत्र के अन्तर्गत जाम नदी, हरदिया नाला, जुनेहा नाला, गुलर नाला, झरना नदी, सीलाजन नाला आदि प्रवाहित होता है।

4:5:1:2 अनुवर्ती जलधारा (Consequent Stream) :-

किसी भी स्थल खण्ड में बास्तविक तथा प्राण्विक बाल के अनुसार प्रवाहित होने वाली नदी को अनुवर्ती जलधारा कहा जाता है, जलधाराओं का विकास चूँकि पूर्ण रूप से स्थलखण्ड के बाल के स्वभाव के अनुसार होता है, अतः ये जालीतुमा प्रवाह-प्रणाली को मुख्य धारा होती है। अन्य सहायक नदियाँ चैया, गोखला तथा धाघरी, आकर मिलती है, ये नदियाँ मुख्य रूप से बाल की नदियों के सहारे प्रवाहित होती है इतने नतिनी (Dip Stream) भी कहा जाता है। यदि तटीय मैदान का उदाहरण लिया जाय तो उस पर अनुवर्ती नदियाँ प्रायः समानान्तर हुआ करता है। तथा ये नदियाँ यहाँ पर समानान्तर प्रवाह-प्रणाली का सृजन करती है, प्रत्येक अनुवर्ती नदी निम्न बाल की ओर प्रवाहित होती है। यदि किसी क्षेत्र मे कई अनुवर्ती नदियाँ है उनमे एक सवारिक लब्ध होती है, जिसे प्रमुख अनुवर्ती (Master Consequent) कहा जाता है। अभ्यन क्षेत्र मे इस प्रतिरूप की प्रमुखत: मेलू नदी, गोखला, गुलसकरी नदी अनुवर्ती जलधारा के रूप मे प्रवाहित है।

4:5:1:3 पादपाकार प्रवाह-प्रणाली (Dendritic Drainage Pattern) :-

इस प्रवाह-प्रणाली को हामाकृति या वृक्षाप प्रवाह-प्रणाली की भी संज्ञा प्रदान की जाती है। इस प्रकार की जलधाराओं का विकास मुख्य रूप से सपाट
तथा चौरस विस्तृत भाग में होता है। प्रेमाइट शैल वाले भाग में इनका विस्तार स्वाभाविक होता है। ऐसी जलधाराओं वाले प्रवाह-क्रम का पादपकार प्रवाह-प्रणाली कहा जाता है। इनका आकार देखने पर वृक्ष के तने तथा उसी शाखाओं के समान दिखाई पड़ता है। उसी प्रकार पादपकार प्रणाली में केंद्र की एक मुख्य जलधारा होती है और उसकी सहायक तथा सहायक की सहायक उप सहायक आदि शाखाओं सभी दिशाओं से आकर मुख्य जलधारा से मिल जाती है। जिस तरह वृक्ष की छोटी शाखाएं बड़ी शाखाओं से मिलती हैं, उसी तरह इस प्रवाह-प्रणाली में छोटी जलधारा में बड़ी जलधाराओं में मिली रहती है। यद्यपि संरचना का पादपकार प्रवाह-प्रणाली पर कोई खास प्रभाव नहीं पड़ता है तथापि एक ही शैल से निर्मित समतल भू-भाग में इनका विकास शीघ्र एवं स्पष्ट रूप में होता है। पादपकार प्रवाह-प्रणाली में नदियों के विस्तार तथा उनकी सहायक जलधाराओं की संख्या के ऊपर शैल की प्रवेशपथ तथा ढाल का प्रभाव अवरोध पड़ता है। अध्ययन क्षेत्र के अधिकांश क्षेत्रों में समान अवरोध वाली आग्नेय शैल के ऊपर पादपकार प्रवाह-प्रणाली का विकास हुआ है। जिनमें गोलाई नदी, दुलकी नाला, मरघाटी नदी, इत्यादि का प्रवाह पादपकार के रूप में मिलता है।

4:5:1:4 आयताकार प्रवाह-प्रणाली (Rectangular drainage Pattern) :-
आयताकार प्रवाह-प्रणाली में भी सहायक नदियाँ अपनी मुख्य नदी से समकोण पर मिलती है परंतु यह प्रवाह प्रणाली, अनुवक्ती-प्रणाली से सर्वथा भिन्न है क्योंकि अन्त में नदियाँ ढाल के अनुरूप होती है एवं उनके मिलने का कोण उस स्थल के नवलम्ब तथा निति द्वारा निर्धारित होती है परंतु आयताकार प्रवाह-प्रणाली में नदियों के मिलने के स्थान का कोण चूटान के सन्धियों के स्वभाव द्वारा
निर्धारित होता है। इसका विकास चट्टानों के जोड़ से तथा संस्थियों आपत के रूप में होती है। इस कारण सर्व प्रथम संस्थियों के साहरे चट्टान का अपश्य प्रद्य विघटन एवं विवर्जन होता है। तदन्तर संस्थियों का विस्तार हो जाता है एवं उनमें वाही जल एकत्र होने लगता है। फलस्वरूप छोटे-छोटे नालो का विकास होता है। चारों तरफ समकोण बनाते हुए एक दूसरे से मिलते हैं। इस प्रकार की जलधारा को आपतकार प्रवाह-प्रणाली कहते हैं। अध्ययन क्षेत्र के अन्तर्गत कौशी नाला, बेरियानाला, कढ़ा नदी, सिन्दूरी नदी, हरदिया नाला इस प्रतिरूप का उदाहरण है।

4:5:1:5 अपकेन्द्रीय प्रवाह-प्रणाली

(Radial or Centrifugal drainage Pattern) :-

इस प्रकार की प्रणाली में नदियाँ एक स्थान से निकलकर चारों तरफ को प्रसारित होती है, अतः इस प्रकार की प्रवाह-प्रणाली को केंद्र स्थानीय या अरर्रय प्रवाह नरम कहा जा सकता है। इस तरह की प्रवाह-प्रणाली के विकास के लिए आवश्यक दशाएं, गुम्बाकार पर्वत या ज्वालामुखी शंकुओं में मिलती है, जहाँ पर ऊपरी केंद्र से चारों तरफ का प्रवाह समान झाल होता है। ठोची पटार के मध्यवर्ती उत्तिक भाग ने अपकेन्द्रीय प्रवाह-प्रणाली को जन्म दिया है, जहाँ पर नदियाँ शीर्षवर्ती अपरस्त में व्यस्त हैं। हजारीबाग पटार के उत्तर भाग फहाड़ी तथा डाल्मा ज्वालामुखी पर्वत के ऊपर भी अपकेन्द्रीय प्रवाह-प्रणाली का विकास हुआ है। जबकि अध्ययन क्षेत्र में लगभग 450 मीटर के उच्चताप्य भाग से नदियाँ निकलकर नति के से सहारे भी दिशाओं में प्रवाहित होकर अररय प्रवाह-प्रणाली को विकसित की है जिसमे प्रमुखतः चैया, हेरू नदियाँ हैं।
वलयाकार प्रवाह-प्रणाली (Annular drainage Pattern) :-

वलयाकार प्रवाह-प्रणाली को चक्र रंग भी कहा जाता है क्योंकि इसके जल धाराएं एक वृत्त के आकार में फैली होती हैं। इस तरह की प्रवाह-प्रणाली मुख्य रूप से प्रौढ़ एवं चर्चित गुप्तवर्त रेखाएं में विकसित होती है। इन शैलियों के विकास मुलायम चट्टानों चाले भागों में गुप्त तक चाहे तरफ परिवर्त चे आकार में होता है। अध्ययन क्षेत्र की अपेक्षा नदी वलयाकार प्रवाह-प्रणाली विकसित है।

4:6 सारांश एवं उपसंहार (Summary And Conclusion)

प्रवाह-घनत्व में सरिता की लम्बाई को सम्मिलित किया जाता है। नदियों की संख्या तथा लम्बाई मुख्य रूप से वर्षा की मात्रा पर आधारित होती है। उच्च परिवर्त श्रेणियों में ढाल बृद्धि से कम वर्षा होती है जिससे प्रवाह-घनत्व का विकास निम्न होता है। प्रवाह-घनत्व को निम्न श्रेणियों में बीता जाता है।<1 अर्थात् Ddel (0अंत निम्न प्रवाह घनत्व), 1-2 अर्थात् Ddl (निम्न प्रवाह-घनत्व), 2-3 अर्थात् (Ddm.) (मध्यम प्रवाह-घनत्व), 3-4 अर्थात् Ddh (उच्च प्रवाह-घनत्व) तथा 4> अर्थात् Ddvh (अंत निम्न प्रवाह प्रवाह-घनत्व) का श्रेणी 28.40% अर्थात् 486.40 वर्ग किलोमीटर, निम्न प्रवाह-घनत्व का श्रेणी 24.36% अर्थात् 417.28 वर्ग किलोमीटर, मध्यम प्रवाह-घनत्व का श्रेणी 14.20% अर्थात् 243.20 वर्ग किलोमीटर, उच्च प्रवाह-घनत्व का श्रेणी 22.42% अर्थात् 384.00 वर्ग किलोमीटर तथा अंत उच्च प्रवाह-घनत्व का श्रेणी 10.71% अर्थात् 181.76 वर्ग किलोमीटर है। प्रवाह-घनत्व का समानार माध्य, 0.79 माध्यमिका 2.94 तथा बहुलक 122.15 है। प्रवाह-घनत्व एवं निरपेक्ष उच्चावच के मध्य सह-सम्बन्ध धारावधक +0.79 है।

[97]
अध्ययन क्षेत्र में सरिता-बाराभारता 5 श्रेणियों में विभाजित है <\-2 (Fp)
मिन सरिता-बाराभारता के अन्तर्गत सम्पूर्ण क्षेत्र का 44.09% अर्थात 755.20 वर्ग
किलोमीटर, 3-4 (Fm) मध्यम सरिता-बाराभारता जो सम्पूर्ण वेसिन का 24.96%
अर्थात 427.52 वर्ग किलोमीटर, 6(Fh) उच्च सरिता-बाराभारता जो सम्पूर्ण वेसिन का
तृतीय क्षेत्र है। जिसका क्षेत्र 22.27% अर्थात 381.44 वर्ग किलोमीटर तथा
(Fvh) अति उच्च सरिता-बाराभारता जो सम्पूर्ण वेसिन क्षेत्र का सीमित भाग है।
जिसका क्षेत्रफल 8.66% अर्थात 148.48 वर्ग किलोमीटर सम्मिलित है।
सरिता-बाराभारता का सांख्यिकीय विवेचना हेतु समान्तर माध्य-2.31,
माध्यिका-2.25 तथा बहुलक-149.42 है। काल-पिरंडसन के अनुसार
सरिता-बाराभारता एवं नियंत्रक उच्चावच के मध्य सह सम्बन्ध को दर्शाया गया है।
सरिता-बाराभारता एवं नियंत्रक उच्चावच में मध्य घनात्मक + 0.394 सह-सम्बन्ध
है। अध्ययन क्षेत्र में जलीय आवृत्तिमैत्र फहरुओं का अध्ययन किया जाता है।
अध्ययन क्षेत्र में प्रवाह-प्रणाली को मिन 6 वर्गों में विभाजित किया गया है
जालीना प्रवाह-प्रणाली अन्तर्गत जाम नदी, जुनेदा नाला, गुलर नाला आदि का
विकास मिलता है। अनुवांशिक जलधारा-गोखला, मेलू नदी आदि, पादपाकार
प्रवाह-प्रणाली के अन्तर्गत गोखलाई नदी, बुलकी नाला, मरघाटी नदी आदि सहायक
नदियों का विकास मिलता है, आयातक। प्रवाह-प्रणाली के
अन्तर्गत-कोडी नाला, बेरियानाला, कड्रा नदी, सिन्दूरी नदी, हरदिया नदी आदि
सहायक नदी प्रवाहित है। अपक्रेय प्रवाह-प्रणाली के अन्तर्गत-चौया नदी, हेहू
नदी आदि सहायक नदी प्रवाहित है।

[98]