Contents

Chapter 1
INTRODUCTION .. 1

1.1. Uniqueness of bamboos .. 1
1.2. Basic biology and biodiversity of bamboo 2
1.3. Bamboo in social, cultural and economic life vis-a-vis North-East India 4
1.4. Market economy and new initiatives 6
1.5. Bamboo as food and nutraceutical: Lesser known aspect and knowledge gap ... 7
1.6. Objectives of the present study 8

Chapter 2
REVIEW OF LITERATURE ... 13

2.1. Bamboo taxonomy, salient features and distribution 13
2.2. Geographical distribution ... 14
2.3. Center of origin and diversity .. 17
2.4. Growth and morph type ... 17
2.5. Bamboo cytogenetics ... 19
2.6. Free radicals, oxidative stress, antioxidants and health implication 20
2.7. Antioxidants and their role in oxidative stress prevention 24
2.8. Anti-oxidant and DNA damage prevention 31
2.9. Assays for estimation of antioxidant activity 32
2.10. Nutritive values of bamboo shoot 34
2.11. Nutraceutical values of bamboo shoot and human health 37
2.12. Value addition, traditional processing and their prospect 40
2.13. Market economics .. 46
Chapter 3

MATERIALS AND METHODS

3.1. Plant materials and location of collection
3.2. Sample processing
3.3. Determination of moisture content
3.4. Determination of pH
3.5. Biochemical analysis for major nutritional components of tender bamboo shoot
 3.5.1. Determination of crude protein
 3.5.2. Determination of total carbohydrate
 3.5.3. Determination of lipid content
 3.5.4. Determination of crude fiber
 3.5.5. Determination of ash content
3.6. Determination of calorific value
3.7. Determination of nutraceutical value
 3.7.1. Estimation of total free amino acid
 3.7.2. Estimation of total phenolics
 3.7.3. Estimation of total flavonoids
3.8. In vitro antioxidant assay
 3.8.1. DPPH radical scavenging assay (DPPH-RSA)
 3.8.2. IC_{50} value by DPPH reduction with increasing concentration of extract
 3.8.3. Reducing power assay (RPA)
3.9. Biochemical markers
 3.9.1. Nitrate reductase activity
 3.9.2. Phosphatase assay
3.10. Statistical analysis of data
3.11. Genetic Diversity study by DNA profile amplified with random primer
 3.11.1. Extraction of genomic DNA
 3.11.2. Quality checking of DNA and quantification
 3.11.3. PCR amplification of DNA
 3.11.4. Gel scoring and data analysis
RESULTS .. 69

4.1. Moisture content .. 69
4.2. pH value .. 69
4.3. Nutritive values: Major nutritional components 69
 4.3.1. Crude protein .. 70
 4.3.2. Total carbohydrate and total soluble sugar 70
 4.3.3. Lipid ... 73
 4.3.4. Crude fiber ... 73
 4.3.5. Ash content ... 77
4.4. Estimation of nutraceutical components and dietary antioxidants 77
 4.4.1. Free amino acid .. 77
 4.4.2. Phenolics .. 77
 4.4.3. Flavonoid ... 78
 4.4.4. In vitro assessment of antioxidant activity 81
4.5. Biochemical assessment based on growth enzyme activity 82
 4.5.1. Nitrate reductase (NR) activity 82
 4.5.2. Alkaline phosphatase (ALPH) activity 85
 4.5.3. Acid phosphatase (ACPH) activity 86
 4.5.4. Molecular characterization by RAPD 90

Chapter 5
DISCUSSION ... 99

5.1. Moisture content and pH value 99
5.2. Major nutritional components 100
5.3. Evaluation of nutraceutical value 104
5.4. Biochemical assessment through growth enzyme activity 108
5.5. Molecular analysis of genetic diversity based on RAPD 111

Chapter 6
SUMMARY AND CONCLUSION 113

6.1. Nutritive value .. 113
6.2. Nutraceutical value and in vitro antioxidant assay 114
6.3. Study of growth enzyme activity 115
6.4. Molecular analysis by DNA profile amplified with random primer (RAPD) ... 116
List of Tables

Table 1: Flowering cycle for some common bamboo species .. 19

Table 2: List of in vitro antioxidant assay methods .. 33

Table 3: Location of collection for tender bamboo shoot of the eleven bamboo species .. 53

Table 4: Species with local names and growth morphotypes of the bamboo species 54

Table 5: Primer used for DNA amplification with specification ... 65

Table 6: pH and moisture content of tender bamboo shoot .. 70

Table 7: Nutritive values of tender bamboo shoot with calorific value 72

Table 8: Nutritive values of tender bamboo shoot in terms of TSS, crude fiber and ash content ... 73

Table 9: Nutraceutical parameters – Free amino acid total phenolics and flavonoid content .. 78

Table 10: In vitro antioxidant activity in different bamboo species by DPPH reduction and reducing power assay including IC₅₀ ... 81

Table 11: Co-efficient of correlation between the dietary antioxidants and assay results including IC₅₀ .. 82

Table 12: Nitrate reductase activity (µmol NO₂ hr⁻¹ g⁻¹ f w) of different bamboo species .. 85

Table 13: Alkaline phosphatase activity (µmol hr⁻¹ g⁻¹ fw) of different bamboo species .. 86
Table 14: Acid phosphatase activity (µmol hr⁻¹ g⁻¹ fw) of different bamboo species. 90

Table 15: Frequency distribution for amplicons generated with RPI 10 for the 11 species of bamboo. 96

Table 16: SI matrix for the eleven species based on DNA profile amplified with RPI 10. 97
List of Figures

Figure 1: Flow chart showing objectives of the present study 10

Figure 2: The whole bamboo plant: (a) B. balcooa, (b) B. teres, (c) B. tulda and tender bamboo shoot of (d) M. baccifera, (e) B. balcooa, (f) B. pseudopallida. 11

Figure 3: Biodiversity status of bamboo at different level .. 15

Figure 4: Range of natural distribution of bamboos in the world 16

Figure 5: Flowchart showing antioxidant types ... 24

Figure 6: Chemical structure of gallic acid .. 27

Figure 7: Basic skeleton of flavonoid ... 27

Figure 8: Chemical Structure of carotenoids (a) beta-carotene, (b) lycopene 29

Figure 9: Chemical Structure of ascorbic acid ... 29

Figure 10: Chemical Structure of alpha-tocopherol ... 29

Figure 11: Value added product from tender shoot of Dendrocalamus hamiltonii based on traditional knowledge and modern techniques 39

Figure 12: Flow chart showing traditional fermented food product from tender bamboo shoot in Manipur ... 39

Figure 13: Flow chart showing traditional processing and consumption of tender bamboo shoot in Nagaland ... 41

Figure 14: Flow chart showing traditional processing and consumption of tender bamboo shoot in Indonesia ... 42

Figure 15: Flow chart showing traditional processing and consumption of tender bamboo shoot in Assam ... 43
Figure 16: pH of different tender bamboo shoots of bamboo species. 71
Figure 17: Moisture content of different tender bamboo shoots of bamboo species. .. 71
Figure 18: Total crude protein content of different tender bamboo shoots of bamboo species. .. 74
Figure 19: Total carbohydrate content of different tender bamboo shoots of bamboo species. .. 74
Figure 20: Total soluble sugar of different tender bamboo shoots of bamboo species. .. 75
Figure 21: Total lipid content of different tender bamboo shoots of bamboo species. 75
Figure 22: Crude fiber content of different tender bamboo shoots of bamboo species. .. 76
Figure 23: Ash content of different tender bamboo shoots of bamboo species...... 76
Figure 24: Free amino acid of different tender bamboo shoots of bamboo species. 79
Figure 25: Total phenolic content of different tender bamboo shoots of bamboo species. .. 79
Figure 26: Flavonoid content of different tender bamboo shoots of bamboo species. .. 80
Figure 27: DPPH-RSA % of different tender bamboo shoots of bamboo species... 83
Figure 28: DPPH-IC_{50} of different tender bamboo shoots of bamboo species....... 83
Figure 29: Reductive power from RPA of different tender bamboo shoots of bamboo species. .. 84
Figure 30: Nitrate reductase (NR) activity (µmol NO_{2} hr^{-1} g^{-1} f w) of different tender bamboo shoots of different bamboo species.. 87
Figure 31: Alkaline phosphatase activity (µmol hr^{-1} g^{-1} fw) of different tender bamboo shoots of bamboo species. ... 88
Figure 32: Acid phosphatase activity (µmol hr\(^{-1}\) g\(^{-1}\) fw) of different tender bamboo shoots of bamboo species ... 89

Figure 33: Agarose gel photograph of PCR amplicons using random primer RPI-6 (left) and RPI-7 (right). ... 93

Figure 34: Agarose gel photograph of PCR amplicons using random primer RPI-8 (left) and RPI-9 (right). ... 94

Figure 35: Agarose gel photograph of PCR amplicons using random primer RPI-10 ... 95

Figure 36: Dendrogram for the bamboo species based on DNA profile amplified with random primer RPI 10 using Jaccard distance 98
List of Standard Abbreviations

ABS absorbance
ABTS 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)
ACPH acid phosphatase
ALPH alkaline phosphatase
AOAC association of official analytical chemist
CD critical difference
conc. concentration
CTAB cetyltrimethyl ammonium bromide
dNTPs deoxy nucleotide tri phosphates
DPPH 1,1-diphenyl-2-picryl hydrazyl
dw dry weight
EDTA ethylenediaminetetraacetic acid
Em electrophoretic mobility
fw fresh weight
GAE galic acid equivalent
IC inhibition concentration
INBAR international network for bamboo and rattan
NE India north east India
NR nitrate reductase
NTSYS PC numerical taxonomy system for personal computer
OD optical density
PCR polymerase chain reaction
pH hydrogen ion concentration
PIC polymorphic information content
p-Nitrophenyl pera nitrophenyl
QE quarcertin equivalent
RPA reducing power assay
RPI random primer
RSA radical scavenging activity
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE</td>
<td>rutin equivalent</td>
</tr>
<tr>
<td>RAPD</td>
<td>random amplified polymorphic DNA</td>
</tr>
<tr>
<td>SEm</td>
<td>standard error of mean</td>
</tr>
<tr>
<td>SI</td>
<td>similarity index</td>
</tr>
<tr>
<td>TE</td>
<td>tris EDTA</td>
</tr>
<tr>
<td>TAE</td>
<td>tris acetate EDTA</td>
</tr>
<tr>
<td>TSS</td>
<td>total soluble sugar</td>
</tr>
<tr>
<td>UPGMA</td>
<td>unweighted pair group method of arithmetic mean</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
</tbody>
</table>
List of Units

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>cal</td>
<td>calorie</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base</td>
</tr>
<tr>
<td>kcal</td>
<td>kilo calorie</td>
</tr>
<tr>
<td>ng</td>
<td>nano gram</td>
</tr>
<tr>
<td>nm</td>
<td>nano meter</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>mM</td>
<td>milimolar</td>
</tr>
<tr>
<td>N</td>
<td>normal</td>
</tr>
<tr>
<td>rcf (g)</td>
<td>relative centrifugal force</td>
</tr>
<tr>
<td>rpm</td>
<td>rotation per minute</td>
</tr>
<tr>
<td>µg</td>
<td>micro gram</td>
</tr>
<tr>
<td>µl</td>
<td>micro litre</td>
</tr>
<tr>
<td>µmol</td>
<td>micromole</td>
</tr>
<tr>
<td>µmol hr⁻¹g⁻¹fw</td>
<td>micromole per hour per gram fresh weight</td>
</tr>
<tr>
<td>µmol NO₂ hr⁻¹g⁻¹fw</td>
<td>micromole of nitrite per hour per gram fresh weight</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength in nanometer</td>
</tr>
</tbody>
</table>