Contents

Introduction
1.1 Tea in India
1.2 Classification of tea
1.3 Major problems faced by tea industry
1.4 Molecular Markers
1.5 Potential of molecular markers in germplasm characterization
1.6 Objectives
1.7 Thesis structure

Review of literature
2.1 Conservation and improvement of tea in India
2.2 Molecular marker studies on tea
2.2.1 Isozyme markers
2.2.2 Restriction fragment length polymorphism (RFLP)
2.2.3 RAPD markers
2.2.4 ISSR markers
2.2.5 AFLP markers
2.2.6 Retrotransposons based molecular markers
2.2.7 Sequence specific amplified polymorphism (SSAP)
2.2.8 Microsatellites or Simple Sequence Repeats

Materials and methods
3.1 Plant material used in this study
3.1.1 Details of accessions
3.2 Isolation of genomic DNA
3.2.1 Extraction of genomic DNA
3.2.2 DNA quantification
3.3 Conventional and 4- select AFLP
3.3.1 Restriction ligation reaction
3.3.2 Pre-amplification
3.3.3 Primer labeling
3.3.4 Selective amplification
3.4 Three endonuclease (TE) – AFLP
3.4.1 Restriction ligation reaction
3.4.2 Preamplification
3.4.3 Primer labeling, selective amplification and gel electrophoresis
3.5 Polyacrylamide gel electrophoresis
3.5.1 Preparation of glass plates
3.5.2 Assembly of the casting apparatus
3.5.3 Preparation of polyacrylamide gel
3.5.4 Sample loading
3.5.5 Gel drying and autoradiography
3.6 Statistical analysis of marker data
3.6.1 Scoring of marker data
3.6.2 Multiplex ratio (MR)
3.6.3 Effect Multiplex ratio (EMR)
3.6.4 Polymorphic information content (PIC) and Average heterozygosity
3.6.5 Marker index (MI)
3.6.6 Resolving power
3.6.7 Calculation of similarity matrix
3.6.8 Cluster analysis
3.6.9 Principal component analysis
3.6.10 Mantel test
3.7 Cloning and sequencing of DNA fragments
3.7.1 Ligation in pGem-T vector
3.7.2 Preparation of Z competent cells
3.7.3 Preparation of LB plates containing X-gal, IPTG and Ampicillin
3.7.4 Transformation of E. coli competent cells
3.7.5 Colony PCR
3.7.6 Isolation of Plasmid DNA
3.7.7 Sequencing

Genetic diversity in Indian tea accessions

4.1 Standardization of an improved AFLP based method in tea
4.1.1 Background
4.1.2 Initial studies
4.1.3 Comparative evaluation of 4-select AFLP and TE-AFLP
4.1.3.1 Banding attributes
4.1.3.2 Genetic diversity and cluster analysis
4.2 Genetic diversity analysis of TRA clones
4.2.1 Marker attributes
4.2.2 Cluster analysis
4.3 Genetic diversity analysis of UPASI clones
4.4 Combined analysis of TRA and UPASI clones
4.4.1 Banding attributes
4.4.2 Cluster analysis of accessions

Development of microsatellite markers

5.1 Introduction
5.2 Microsatellite isolation with Dynabeads
5.2.1 Genomic DNA extraction
5.2.2 Restriction digestion of DNA with RsaI and BstU1
5.2.3 Adaptor Ligation
5.2.4 Preamplification of adaptor ligated fragments
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.5 Hybridisation with biotinylated probes</td>
<td>101</td>
</tr>
<tr>
<td>5.2.6 Capturing of fragments with streptavidin-coated magnetic beads</td>
<td>102</td>
</tr>
<tr>
<td>5.2.7 PCR amplification of enriched DNA</td>
<td>103</td>
</tr>
<tr>
<td>5.3 Microsatellites isolation by FIASCO method</td>
<td>104</td>
</tr>
<tr>
<td>5.4 Sequence analysis and designing of primers</td>
<td>107</td>
</tr>
<tr>
<td>5.5 Results and discussion</td>
<td>108</td>
</tr>
<tr>
<td>5.5.1 SNX method of SSR library preparation and enrichment</td>
<td>108</td>
</tr>
<tr>
<td>5.5.2 FIASCO method of SSR library preparation and enrichment</td>
<td>113</td>
</tr>
<tr>
<td>5.5.3 Comparison of the efficiency of two methods of library construction</td>
<td>127</td>
</tr>
<tr>
<td>Development of SSAP markers</td>
<td>129</td>
</tr>
<tr>
<td>6.1 Isolation of RT gene sequences</td>
<td>132</td>
</tr>
<tr>
<td>6.1.1 PCR amplification of RT gene</td>
<td>132</td>
</tr>
<tr>
<td>6.1.2 Phylogenetic analysis of RT sequences</td>
<td>133</td>
</tr>
<tr>
<td>6.2 Isolation of LTR sequences by PCR walking</td>
<td>135</td>
</tr>
<tr>
<td>6.2.1 LTR isolation using RNase H sequence information</td>
<td>135</td>
</tr>
<tr>
<td>6.2.2 Isolation of LTR through PCR walking (First round)</td>
<td>137</td>
</tr>
<tr>
<td>6.2.2.1 Restriction digestion of genomic DNA</td>
<td>137</td>
</tr>
<tr>
<td>6.2.2.2 Adaptor ligation</td>
<td>138</td>
</tr>
<tr>
<td>6.2.2.3 PCR amplification</td>
<td>139</td>
</tr>
<tr>
<td>6.2.2.4 Cloning of amplification products</td>
<td>141</td>
</tr>
<tr>
<td>6.2.3 2nd round of PCR walk</td>
<td>144</td>
</tr>
<tr>
<td>6.3 SSAP primer designing and screening</td>
<td>149</td>
</tr>
<tr>
<td>6.3.1 Designing of SSAP primers</td>
<td>149</td>
</tr>
<tr>
<td>6.4 Standardization of SSAP primer combinations</td>
<td>152</td>
</tr>
<tr>
<td>6.4.1 SSAP profiling</td>
<td>152</td>
</tr>
<tr>
<td>Summary and conclusions</td>
<td>158</td>
</tr>
<tr>
<td>7.1 Standardization of an improved AFLP based method in tea</td>
<td>158</td>
</tr>
</tbody>
</table>
7.2 Genetic diversity in TRA accessions
7.3 Genetic diversity in UPASI accessions
7.4 Genetic diversity of TRA and UPASI accessions
7.5 Development of microsatellite markers
7.6 Development of SSAP markers

Bibliography

Appendices

Appendix 1. Nucleotide and amino acid sequences of reverse transcriptase (RT) gene from C. species
Appendix 2. Multiple sequence alignment of RT nucleotide sequences
Appendix 3. Multiple sequence alignment of RT amino acid sequences
Appendix 4. RT-LTR sequences obtained in the first round of PCR walking
Appendix 5. Genebank accession numbers of tea reverse transcriptase (RT) sequences submitted to NCBI sequence database.
Appendix 6. RNaseH1-LTR sequences obtained in the second round of PCR walking
Appendix 7. Multiple sequence alignment of LTR nucleotide sequences
Appendix 8. Multiple sequence alignment of LTR amino acid sequences
Appendix 9. Genebank accession numbers of tea SSR sequences submitted to NCBI