TABLE OF CONTENTS

Declaration ii
Certificate iii
Acknowledgements iv
Abstract v
Table of contents vi
List of tables xi
List of figures xiv

CHAPTER I: INTRODUCTION 1

1.1 An overview 1
1.2 Scope of thesis 3
1.3 Objectives of this Study 4
1.4 The aims of this study 4
1.5 Thesis organization 4

CHAPTER II: LITERATURE SURVEY 6

2.1 History and application of aluminium and its alloy 6
2.2 Aluminium and metallurgical background 7
 2.2.1 Major alloying elements and their effects 8
2.3 Metal matrix composites 9
 2.3.1 Introduction 9
 2.3.2 Particulate strengthened metal matrix composites 10
2.4 Metal matrix types 10
2.5 Reinforcements 11
2.6 Methods for fabrication of MMCs 11
 2.6.1 Liquid metallurgy 12
 2.6.1.1 Stir casting 12
 2.6.1.2 Liquid infiltration 14
 2.6.1.3 Spraying 15
 2.6.1.4 In-situ processes 16
 2.6.2 solid state fabrication 17
 2.6.2.1 Powder metallurgy 17
2.6.2.2 Diffusion bonding 18
2.6.3 Secondary processing 18
2.7 Grain refinement and Hall-Petch effect 19
2.8 Severe plastic deformation (SPD) of metals 20
 2.8.1 Equal channel angular pressing (ECAP) 21
2.9 Challenges in stir casting 23
 2.9.1 Fluidity 24
 2.9.2 Fluidity of composite 25
 2.9.3 Influencing factors of reinforcement on fluidity 26
 2.9.3.1 Particle volume fraction 26
 2.9.3.2 Particle surface area 27
 2.9.3.3 Particle size 27
 2.9.3.4 Particle shape 28
2.10 Wetting phenomena and wetting of ceramic particles by molten metals in the production of MMCs 29
 2.10.1 Factors retarding wettability 31
 2.10.2 Methods to promote wettability 32
 2.10.2.1 Addition of alloying elements 32
 2.10.2.2 Particle coating 34
 2.10.2.3 Particle heating 34
 2.10.2.4 Other methods to promote wettability 34
 2.10.3 Wetting of ceramic particulates in the production of MMCs 35
2.11 Porosity 36
2.12 Strengthening mechanisms in particulate reinforced metal matrix composites 37
 2.13.1 Stiffness 40
 2.13.2 Elongation 41
 2.13.3 Strength 43
2.14 Wear 44
 2.14.1 Wear mechanisms 45
2.15 Wear behavior of SPD materials 45
2.15.1 Improved wear resistance by SPD 46
2.15.2 Reduced wear resistance by SPD 48
2.15.3 No effect on wear by SPD 49

CHAPTER III: MATERIALS AND METHODS 51
3.1 Overview 51
3.2 Selection of materials 51
 3.2.1 Matrix 51
 3.2.2 Reinforcement 52
3.3 Blending of reinforcement powders 53
3.4 Fabrication of Al_2O_3 red mud composites 53
3.5 Secondary processing (Extrusion) 54
3.6 ECAP Processing 54
3.7 Microstructural characterization 56
3.8 Density measurement procedure 56
3.9 Hardness 57
3.10 Tensile tests 57
3.11 Fractography 58
3.12 Tribological (Wear) measurements 58

CHAPTER IV: RESULTS AND DISCUSSIONS 60
4.1 Characterization of alumina red mud reinforced hybrid aluminum metal matrix composites 60
 4.1.1 Introduction 60
 4.1.2 Production of composites 60
 4.1.3 Metallographic examinations.
 4.1.3.1 Optical microscopy 61
 4.1.3.2 Scanning electron microscopy 61
 4.1.4 Density and porosity measurements 63
 4.1.5 Hardness measurements 65
 4.1.6 Tensile tests 66
 4.1.7 Fractography 66
4.2 Effect of ECAP processing on Al₂O₃ red mud reinforced hybrid aluminum metal matrix composites 67
4.2.1 Introduction 67
4.2.2 Microstructural characterization 68
4.2.3 Density and porosity measurements 70
4.2.4 Hardness measurement 72
4.2.5 Tensile tests 73
4.2.6 Fractography 75

4.3 Wear performance of ECAP processed aluminium 6061 metal matrix composites 75
4.3.1 Wear performance of ECAP processed 2.5% Al₂O₃ red mud reinforced composites 76
4.3.2 Wear performance of ECAP processed 5.0% Al₂O₃ red mud reinforced composites 87
4.3.3 Wear performance of ECAP processed 7.5% Al₂O₃ red mud reinforced composites 97
4.3.4 Wear performance of ECAP processed 10.0% Al₂O₃ red mud reinforced composites 102

CHAPTER V: OPTIMIZATION OF ECAP PROCESS USING DOE 109

5.1 Introduction 109
5.2 Design of experiments 109
5.3 Analysis of signal to noise ratios 110
5.4 Analysis of variance (ANOVA) 117

CHAPTER VI: CONCLUSIONS AND FUTURE WORK 119

6.1 Conclusions 119
6.2 Future work 120
REFERENCES 122
APPENDIX A 142
Wear properties of materials processed by SPD 142
APPENDIX B 143
EDS Spectra of Al₂O₃ and Red Mud 143