Declaration by the candidate

I, S. Amudhan Senthan, hereby declare that this thesis, entitled, *Synthesis, Luminescence, and Electrochemical Studies of Polynuclear Ruthenium(II) Complexes of Tolylterpyridine Appended Calixarenes and Calixresorcarenes*, submitted to the University of Madras, in partial fulfillment of the requirement for the award of the degree of Doctor of Philosophy, is a record of the independent work done by me during the period July 2007 to April 2014 under the guidance of Dr. V. Alexander, Department of Chemistry, Loyola College, Chennai 600034. This work has not formed the basis for the award of any other diploma, degree, or any other similar title in any institution or university to the best of my knowledge.

Place: Chennai-600034

Date: May 05, 2014

S. AMUDHAN SENTHAN
Acknowledgement

I thank the Lord Almighty God for giving me the courage to pursue research and empowering me with perseverance, wisdom, and strength to complete this thesis successfully. I give Him all the glory, honor, and praise.

I express a profound sense of gratitude to my research supervisor, Dr. V. Alexander, who has been my inspiration all through my studies in Loyola. His commitment, constant support, valuable suggestions, perpetual energy and enthusiasm in research has motivated me. Moreover, his philosophical sharing has enlightened my ways of approaching life in a humble and modest way. I am very grateful for his sustained effort in bringing a cooperative spirit and an apex research laboratory in par with the premier institutes, which creates a unique setting for intellectual explorations.

I am grateful of Rev. Dr. G. Joseph Antony Samy, S. J., Principal, Loyola College, Chennai; Rev. Dr. M. Albert William, S. J., Secretary, Loyola College, Chennai; Rev. Dr. V. Joseph Xavier, S. J., Rev. Dr. A. Albert Muthumalai, S.J., and Rev. Dr. Boniface Jeyaraj, S. J.; former Principals, Loyola College; and Rev. Dr. Peter M. Francis, S. J., Rev. Dr. S. Peter Xavier, S. J., and Rev. Dr. F. Andrew, S. J., former Secretaries, Loyola College, for the best ambience and facilities provided in the college. I also extend my gratitude to Dr. D. Suresh Kumar, Associate Professor of Chemistry, Loyola College, for his encouragement and fruitful discussions. I am thankful to other faculty members, and supporting staff, Department of Chemistry, Loyola College, Chennai 600034, for all the help rendered during my research work.

My thanks are due to Dr. M. S. Moni, Scientific Officer, IIT Madras, for recording NMR spectra and Dr. Babu Verghese, Scientific Officer, IIT Madras, for X-ray crystal structure studies. I also thank Dr. P. Ramamurthy, National Centre for Ultra Fast Processes, University of Madras, for providing the facilities to study the emission lifetimes. The help rendered by SAIF, Central Drug Research Institute, Lucknow, and SAIF, Panjab University, Chandigarh, for recording the mass spectra is acknowledged.

Loving gratitude and heartfelt thanks are conveyed to my beloved sister and parents but for whose love, care, sacrifice, and prayers my education to this level
would not have been possible. I owe a special gratitude to my relatives for their continuous and unconditional support.

I sincerely thank Dr. M. Wilson Bosco Paul, A. Arun Viveke, and N. U. Prajith for their relentless efforts and pains they took in helping me to prepare the thesis. I would like to extend my gratitude to John Eugene Nidhiry, Researcher, Department of Organic Chemistry, IISc, Bangalore-560012; S. David Amalraj, Researcher, Department of Polymer Science, University of Madras, Chennai 600025, and K. Suthagar, Researcher, National Center for Catalysis Research, IIT Madras, Chennai-600036 for their invaluable assistance with journal reprints.

I am grateful to my senior colleagues, Dr. S. S. D. Premkumar, Dr. E. Rajalakshmanan, Dr. B. Brainard, Dr. M. Letticia, Dr. N. Arockia Samy, Dr. T. Lurthu Pushparaj, and Dr. R. Revathi for their support and encouragement. The discussions and cooperation with my colleagues have contributed substantially to this work. Special thanks are due to A. Josephine Kanimozhi, A. Nithyakumar, T. Niruban Balu, Mario Leo Joseph, C. Anija Mary, and Sr. Ligimol Louis, C. M. C., for their discussions, cooperation and the lighter moments shared. I wish to remember all my friends who have always been there to help and support me during my doctoral study.

Financial assistance by the Department of Biotechnology (DBT), Government of India, is gratefully acknowledged.

Chennai-600034

S. AMUDHAN SENTHAN

May 05, 2014
Suscipe

Take, Lord, and receive all my liberty,
my memory, my understanding
and my entire will,
All I have and call my own.

You have given all to me.
To you, Lord, I return it.

Everything is yours; do with it what you will.
Give me only your love and your grace.
That is enough for me.

-St. Ignatius of Loyola
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3-dpp</td>
<td>2,3-bis(2-pyridyl)pyrazine</td>
</tr>
<tr>
<td>2,5-dpp</td>
<td>2,5-bis(2-pyridyl)pyrazine</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>BiBzIm</td>
<td>2,2'-bibenzimidazole</td>
</tr>
<tr>
<td>BPTZ</td>
<td>3,6-bis(2-pyridyl)tetrazine</td>
</tr>
<tr>
<td>bpy</td>
<td>2,2'-bipyridine</td>
</tr>
<tr>
<td>bpzt</td>
<td>3,5-bis(pyrazin-2-yl)-1,2,4-triazole</td>
</tr>
<tr>
<td>chrysi</td>
<td>5,6-chrysene quinine diimine</td>
</tr>
<tr>
<td>DART</td>
<td>direct analysis in real time</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dpbq</td>
<td>2,3-bis(2'-pyridyl)benzo[g]quinoxaline</td>
</tr>
<tr>
<td>dpimbH₂</td>
<td>2,6-bis(2'-pyridyl)benzimidazole</td>
</tr>
<tr>
<td>dpop</td>
<td>dipyrrolo[2,3-a:2',3'-h]phenazine</td>
</tr>
<tr>
<td>dppn</td>
<td>benzo[i]dipyrrolo[3,2-a:2',3'-c]phenazine</td>
</tr>
<tr>
<td>dppz</td>
<td>dipyrrolo[3,2-a:2',3'-c]phenazine</td>
</tr>
<tr>
<td>dpq</td>
<td>dipyrrolo[3,2-a:2',3'-f]quinoxaline</td>
</tr>
<tr>
<td>dpq-dpq</td>
<td>2,2',3,3'-tetra-2-pyridyl-6,6'-biquinoxaline</td>
</tr>
<tr>
<td>EPR</td>
<td>electron paramagnetic resonance</td>
</tr>
<tr>
<td>ESI-TOF</td>
<td>electron spray ionization time of flight</td>
</tr>
<tr>
<td>HAT</td>
<td>1,4,5,8,9,12-hexaaazatriphenylene</td>
</tr>
<tr>
<td>LC</td>
<td>ligand centered</td>
</tr>
<tr>
<td>LEC</td>
<td>light emitting electrochemical cell</td>
</tr>
<tr>
<td>Ln</td>
<td>lanthanide</td>
</tr>
<tr>
<td>m/z</td>
<td>mass to charge ratio</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>matrix assisted laser desorption ionization time of flight</td>
</tr>
<tr>
<td>MC</td>
<td>metal centered</td>
</tr>
<tr>
<td>MLCT</td>
<td>metal to ligand charge transfer</td>
</tr>
<tr>
<td>NIR</td>
<td>near infrared</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>ORTEP</td>
<td>oak ridge thermal ellipsoid plot</td>
</tr>
<tr>
<td>phen</td>
<td>1,10-phenanthroline</td>
</tr>
<tr>
<td>phi</td>
<td>phenanthrenequinone</td>
</tr>
<tr>
<td>phzi</td>
<td>benzo[a]phenazine-5,6-quinonediimine</td>
</tr>
<tr>
<td>PMD</td>
<td>photoluminescent molecular devices</td>
</tr>
<tr>
<td>ppz</td>
<td>4',7'-phenanthrolino-5',6':5,6-pyrazine</td>
</tr>
<tr>
<td>tpp</td>
<td>2,3,5,6-tetrakis(2'-pyridyl)pyrazine</td>
</tr>
<tr>
<td>tpy</td>
<td>2,2':6',2''-terpyridine</td>
</tr>
<tr>
<td>ttpy</td>
<td>4'-(p-tolyl)-2,2':6',2''-terpyridine</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
</tbody>
</table>
Contents

Certificate ii
Declaration by the candidate iii
Acknowledgement iv
Abbreviations vii

Chapter I Introduction

1.1 Photochemistry of Polypyridyl Ligands 2
1.2 Photochemistry and Electrochemistry of Bis(terpyridine)ruthenium(II) Complexes 4
1.3 Manipulating the Properties of MLCT Excited States 5
1.4 Modelling Photosynthetic Light Harvesting Supramolecular Assemblies 6
1.5 Ligand Design in Multimetallic Architectures 8
1.5.1 Flexible Ligand Design 9
1.5.2 Multiple Interactions 9
1.6 Photoluminescent Molecular Devices 10
1.7 Design of Photochemical Supramolecular Assemblies 11
1.7.1 Two Component Systems–Electron Donors and Acceptors 12
1.7.2 Two Component Systems–Energy Acceptors 12
1.7.3 Spacers 13
1.8 Photoinduced Energy- and Electron Transfer in Supramolecular Systems 14
1.8.1 Intramolecular Energy Transfer and Laser Spectroscopy 15
1.8.2. Mechanisms of Intramolecular Energy Transfer 16
1.9 Terpyridine-Based Metalloendrimers 17
1.10 Calixarenes and Calixresorcarenes 22
1.11 Historical Development of Calixarenes 23
1.11.1. The Zinke Products 24
1.11.2. The Niederl Products 26
1.12 Mechanism of Calixarene Formation 27
1.12.1 Mechanism of Base-induced Reaction 27
1.12.2 Mechanism of the Acid-catalyzed Reaction 28
1.13 Metal Complexes as Luminescence Sensors for Cations 29
1.14 Luminescent Lanthanide Complexes 31
1.15 Ruthenium(II) Polypyridine Complexes Conjugated Metalloproteins 35
1.15.1 Covalently Linked Ruthenium Complexes to Cytochromes 36
1.16. Identification of the Research Problem 37

Chapter II Aim and Scope of the Investigation

2.1 Aim of the Investigation 39
2.1.1 Precursor Compounds 39
2.1.2 Ligands 40
2.1.3 Polynuclear (Tolylterpyridine)Ruthenium(II) Complexes 42
2.2 Scope of the Investigation 45

Chapter III Experimental Section

3.1 Materials 47
3.1.1 Reagents 47
3.1.2 Solvents 47
3.2 Physical Measurements 48
3.2.1 Infrared spectra 48
3.2.2 Mass spectra 48
3.2.3 NMR spectra 49
3.2.4 CHN analysis 49
3.2.5 Electronic absorption spectra 49
3.2.6 Fluorescence spectra 49
3.2.7 Emission lifetime 50
3.2.8 Electrochemical studies 50
3.2.9 Rotavapor 50
3.2.10 Cryostat 50
3.2.11 X-ray diffraction 50
3.3 Synthesis of Precursor Compounds 51
3.3.1 4′-p-Tolyl)-2,2′:6′,2″-terpyridine (ttpy, 1) 51
3.3.2 4′-p-Bromomethylphenyl)-2,2′:6′,2″-terpyridine (ttpy-Br, 2) 52
3.3.3 [Ru(ttpy)Cl3] (3) 52
3.4 Synthesis of Calixarenes 53
3.4.1 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrahydroxycalix[4]arene (4) 53
3.5 General Procedure for the Synthesis of Calixresorcarenes 54
3.6 General Procedure for the Synthesis of Tolylterpyridine Appended Calixarene 56
3.7 General Procedure for the Synthesis of Tolylterpyridine Appended Calixresorcarene 57
3.8 Synthesis of Ru(II) Complexes of Tolylterpyridine Appended Calixarenes and Calixresorcarenes 59
3.8.1 TetranuclearRuthenium(II) Complex [{Ru(ttpy)}4(L1)](PF6)8 (9) 59
3.8.2 General Procedure for the Synthesis of OctanuclearRuthenium(II) Complexes 60

Chapter IV Results and Discussion

4.1 Synthesis and Characterization of Organic Precursors 62
4.1.1 Synthesis of 4′-p-tolyl)-2,2′:6′,2″-terpyridine (ttpy) (1) 62
4.1.2 Characterization of 4′-p-tolyl)-2,2′:6′,2″-terpyridine (ttpy) (1) 62
4.1.2.1 Infrared spectrum 62
4.1.2.2 1H NMR spectrum 62
4.1.2.3 13C NMR spectrum 63
4.1.2.4 ESI-TOF mass spectrum 63
4.1.3 Synthesis of 4′-p-bromomethylphenyl)-2,2′:6′,2″-terpyridine (ttpy-Br) (2) 64
4.1.4 Characterization of 4′-p-bromomethylphenyl)-2,2′:6′,2″-terpyridine (ttpy-Br) (2) 64
4.1.4.1 Infrared spectrum 64
4.1.4.2 DART mass spectrum 65
4.1.5 Synthesis of [Ru(ttpy)Cl3] (3) 65
4.1.6 Characterization of [Ru(ttpy)Cl3] (3) 65
4.1.6.1 Infrared spectrum 65
4.1.6.2 ESI-TOF mass spectrum 66
4.1.8.1 Infrared spectrum 67
4.1.8.2 DART mass spectrum 67
4.1.8.3 X-ray crystal structure 67
4.1.10.1 Infrared spectrum 73
4.1.10.2 1H NMR spectrum 73
4.1.10.3 13C NMR spectrum 73
4.1.10.4 MALDI-TOF mass spectrum 74
4.1.11 Synthesis of 2,8,14,20-tetraethyl-4,6,10,12,16,18,22,24-octahydroxycalix[4]resorcene (6) 75
4.1.12 Characterization of 2,8,14,20-tetraethyl-4,6,10,12,16,18,22,24-octahydroxycalix [4]resorcarene(6) 75
4.1.12.1 Infrared spectrum 75
4.1.12.2 1H NMR spectrum 75
4.1.12.3 13C NMR spectrum 75
4.1.12.4 ESI-TOF mass spectrum 76
4.1.12.5 X-Ray crystal structure
4.1.13 Synthesis of 2,8,14,20-tetraphenyl-4,6,10,12,16,18,22,24-octahydroxycalix[4]resorcarene (7) 76
4.1.14 Characterization of 2,8,14,20-tetraphenyl-4,6,10,12,16,18,22,24-octahydroxycalix[4]resorcarene (7) 82
4.1.14.1 Infrared spectrum 82
4.1.14.2 1H NMR spectrum 82
4.1.14.3 13C NMR spectrum 82
4.1.14.4 ESI-TOF mass spectrum 83
4.1.14.5 X-Ray crystal structure 83
4.1.15 Synthesis of 2,8,14,20-tetraphenyl-4,6,10,12,16,18,22,24-octahydroxycalix[4]resorcarene (7) 83
4.1.16 Characterization of 2,8,14,20-tetraphenyl-4,6,10,12,16,18,22,24-octahydroxycalix[4]resorcarene (7) 84
4.1.16.1 Infrared spectrum 84
4.1.16.2 1H NMR spectrum 84
4.1.16.3 13C NMR spectrum 85
4.1.16.4 ESI-TOF mass spectrum 85
4.1.16.5 X-Ray crystal structure 85
4.2 Synthesis and Characterization of Ligands 93
4.2.1 Synthesis of 5,11,17,23,29,35,41,47-tetra-tert-butyl-25,26,27,28-tetra(4′-p-benzyloxy-(2,2′:6′,2″-terpyridinyl))calix[4]arene (L1) 104
4.2.2 Characterization of 5,11,17,23,29,35,41,47-tetra-tert-butyl-25,26,27,28-tetra(4′-p-benzyloxy-(2,2′:6′,2″-terpyridinyl))calix[4]arene (L1) 104
4.2.2.1 Infrared spectrum 104
4.2.2.2 1H NMR spectrum 104
4.2.2.3 13C NMR spectrum 105
4.2.2.4 MALDI-TOF mass spectrum 106
4.2.2.5 Electronic absorption spectrum 106
4.2.4.1 Infrared spectrum 108
4.2.4.2 1H NMR spectrum 108
4.2.4.3 13C NMR spectrum 109
4.2.4.4 MALDI-TOF mass spectrum 110
4.2.4.5 Electronic absorption spectrum 110
4.2.5 Synthesis of 2,8,14,20-tetraethyl-4,6,10,12,16,18,22,24-octa(4′-p-benzyloxy-(2,2′:6′,2″-terpyridinyl))calix[4]resorcarene (L3) 111
4.2.6 Characterization of 2,8,14,20-tetraethyl-4,6,10,12,16,18,22,24-octa(4′-p-benzyloxy-(2,2′:6′,2″-terpyridinyl))calix[4]resorcarene (L3) 111
4.2.6.1 Infrared spectrum 111
4.2.6.2 1H NMR spectrum 111
4.2.6.3 13C NMR spectrum 112
4.2.6.4 MALDI-TOF mass spectrum 112
4.2.6.5 Electronic absorption spectrum 112
4.2.7 Synthesis of 2,8,14,20-tetraphenyl-4,6,10,12,16,18,22,24-octaphenyl-(4′-p-benzyloxy-(2,2′:6′,2″-terpyridinyl))calix[4]resorcarene (L4) 115
4.2.8 Characterization of 2,8,14,20-tetraphenyl-4,6,10,12,16,18,22,24-octaphenyl-(4′-p-benzyloxy-(2,2′:6′,2″-terpyridinyl))calix[4]resorcarene (L4) 115
4.2.8.1 Infrared spectrum 115
4.2.8.2 1H NMR spectrum 115
4.2.8.3 13C NMR spectrum 116
4.2.8.4 MALDI-TOF mass spectrum 116
4.2.8.5 Electronic absorption spectrum 116
4.2.9 Synthesis of 2,8,14,20-tetra-p-tolyl-4,6,10,12,16,18,22,24-octa(4′-p-benzylxy-(2,2′:6′,2″-terpyridinyl))calix[4]resorcarene (L5) 118
4.2.10 Characterization of 2,8,14,20-tetra-p-tolyl-4,6,10,12,16,18,22,24-octa(4′-p-benzylxy-(2,2′:6′,2″-terpyridinyl))calix[4]resorcarene (L5) 119
4.2.10.1 Infrared spectrum 119
4.2.10.2 1H NMR spectrum 119
4.2.10.3 13C NMR spectrum 120
4.2.10.4 MALDI-TOF mass spectrum 121
4.2.10.5 Electronic absorption spectrum 121

4.3 Synthesis and Characterization of Polynuclear Ruthenium(II) Complexes 122
4.3.1 Synthesis of [{Ru(tpy)}₄(L1)](PF₆)₈ 122
4.3.2 Characterization of [{Ru(tpy)}₄(L1)](PF₆)₈ 122
4.3.2.1 Infrared spectrum 122
4.3.2.2 ESI-TOF mass spectrum 122
4.3.2.3 Electronic absorption spectrum 124
4.3.3 Synthesis of [{Ru(tpy)}₄(L2)](PF₆)₁₆ (10) 124
4.3.4 Characterization of [{Ru(tpy)}₄(L2)](PF₆)₁₆ (10) 125
4.3.4.1 Infrared spectrum 125
4.3.4.2 ESI-TOF mass spectrum 125
4.3.4.3 Electronic absorption spectrum 126
4.3.5 Synthesis of [{Ru(tpy)}₄(L3)](PF₆)₁₆ (11) 126
4.3.6 Characterization of [{Ru(tpy)}₄(L3)](PF₆)₁₆ (11) 127
4.3.6.1 Infrared spectrum 127
4.3.6.2 ESI-TOF mass spectrum 127
4.3.6.3 Electronic absorption spectrum 128
4.3.7 Synthesis of [{Ru(tpy)}₄(L4)](PF₆)₁₆ (12) 129
4.3.8 Characterization of [{Ru(tpy)}₄(L4)](PF₆)₁₆ (12) 129
4.3.8.1 Infrared spectrum 129
4.3.8.2 ESI-TOF mass spectrum 130
4.3.8.3 Electronic absorption spectrum 131
4.3.9 Synthesis of [{Ru(tpy)}₄(L5)](PF₆)₁₆ (13) 131
4.3.10 Characterization of [{Ru(tpy)}₄(L5)](PF₆)₁₆ (13) 132
4.3.10.1 Infrared spectrum 132
4.3.10.2 ESI-TOF mass spectrum 132
4.3.10.3 Electronic absorption spectrum 133

4.4 Photochemistry of the Ligands and the Polynuclear Complexes 134
4.4.1 Luminescence properties of L1 134
4.4.2 Luminescence properties of [{Ru(tpy)}₄(L1)](PF₆)₈ (9) 134
4.4.2.1 In acetonitrile at room temperature 134
4.4.2.2 In the solid state at room temperature 134
4.4.2.3 In acetonitrile at 77 K 135
4.4.3 Luminescence properties of L2 135
4.4.4 Luminescence properties of [{Ru(tpy)}₄(L2)](PF₆)₁₆ (10) 136
4.4.4.1 In acetonitrile at room temperature 136
4.4.4.2 In the solid state at room temperature 136
4.4.4.3 In acetonitrile at 77 K 136
4.4.5 Luminescence properties of L3 137
4.4.6 Luminescence properties of [{Ru(tpy)}₄(L3)](PF₆)₁₆ (11) 137
4.4.6.1 In acetonitrile at room temperature 137
4.4.6.2 In the solid state at room temperature 137
4.4.6.3 In acetonitrile at 77 K 137
4.4.7 Luminescence properties of L4 138
4.4.8 Luminescence properties of [{Ru(tpy)}₄(L4)](PF₆)₁₆ (12) 139
4.4.8.1 In acetonitrile at room temperature 139
4.4.8.2 In the solid state at room temperature 139
4.4.8.3 In acetonitrile at 77 K 139
4.4.9 Luminescence properties of L5 140
4.4.10 Luminescence properties of \([\{\text{Ru(tpy)}\}_8(\text{L}5)](\text{PF}_6)_{16}\) (13) 140
4.4.10.1 In acetonitrile at room temperature 140
4.4.10.2 In the solid state at room temperature 140
4.4.10.3 In acetonitrile at 77 K 140
4.5 Emission Lifetime of the Polynuclear Complexes 141
4.6 Electrochemistry of the Polynuclear Complexes 142
4.6.1 \([\{\text{Ru(tpy)}\}_4(\text{L}1)](\text{PF}_6)_{8}\) (9) 142
4.6.2 \([\{\text{Ru(tpy)}\}_8(\text{L}2)](\text{PF}_6)_{16}\) (10) 142
4.6.3 \([\{\text{Ru(tpy)}\}_8(\text{L}3)](\text{PF}_6)_{16}\) (11) 143
4.6.4 \([\{\text{Ru(tpy)}\}_8(\text{L}4)](\text{PF}_6)_{16}\) (12) 144
4.6.5 \([\{\text{Ru(tpy)}\}_8(\text{L}5)](\text{PF}_6)_{16}\) (13) 145

Chapter V Summary and Conclusion
5.1 Summary 146
5.1.1 Synthesis of Precursor Compounds 146
5.1.2 Synthesis of tolylterpyridine appended calixarenes and tolylterpyridine appended calixresorcarenes 147
5.1.3 Synthesis of Tetra- and Octanuclear Ruthenium(II) Complexes 147
5.1.4 Electronic Absorption Spectra of Complexes 148
5.1.5 Luminescence Studies and Lifetime of Complexes 148
5.1.6 Electrochemistry of Complexes 150
5.2 Conclusion 151

References