List of Figures

<table>
<thead>
<tr>
<th>Figure no.</th>
<th>Title of figure</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical structures of OZ components</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Fig. 2.2A Pathogenesis of Type 1 Diabetes</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Fig. 2.2B Pathogenesis of Type II Diabetes</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Proposed mechanism leading to diabetes-induced oxidative stress in cells</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Pathways involved in the development of diabetic nephropathy</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Pathophysiology of diabetic neuropathy</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic representation of apoptotic events</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>The canonical Vogelstein Model- the most common analogy for the adenoma carcinoma sequence</td>
<td>39</td>
</tr>
<tr>
<td>2.8</td>
<td>Classification of chemopreventive agents on the basis of their mechanism of action on cancer multistage</td>
<td>42</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic representation of hepatocellular carcinoma</td>
<td>44</td>
</tr>
<tr>
<td>2.10</td>
<td>Basic liposome structure</td>
<td>53</td>
</tr>
<tr>
<td>2.11</td>
<td>A simplified illustration of the production methods of liposomes</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>TLC to detect the presence of cRBO</td>
<td>127</td>
</tr>
<tr>
<td>4.2</td>
<td>Normal-phase chromatogram of tocopherols and tocotrienols in cRBO</td>
<td>134</td>
</tr>
<tr>
<td>4.3</td>
<td>Gas chromatogram of fatty acid composition of cRBO</td>
<td>136</td>
</tr>
<tr>
<td>4.4</td>
<td>TLC of standard and isolated OZ</td>
<td>141</td>
</tr>
<tr>
<td>4.5</td>
<td>UV absorption spectra of isolated OZ</td>
<td>142</td>
</tr>
<tr>
<td>4.6</td>
<td>IR spectrum of isolated OZ in the region from 400 to 4000 cm⁻¹</td>
<td>143</td>
</tr>
<tr>
<td>4.7</td>
<td>4.7A ¹H NMR spectra of isolated OZ</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>4.7B ¹³C NMR spectra of isolated OZ</td>
<td>146</td>
</tr>
<tr>
<td>4.8</td>
<td>Mass spectra for isolated OZ</td>
<td>147</td>
</tr>
<tr>
<td>4.9</td>
<td>4.9A Reverse phase HPLC analysis of standard OZ</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>4.9B Reverse phase HPLC analysis of isolated OZ</td>
<td>149</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of OZ on serum glucose level in diabetic nephropathy</td>
<td>156</td>
</tr>
<tr>
<td>4.11</td>
<td>4.11A Effect of OZ on change in body weight in diabetic nephropathy</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>4.11B Effect of OZ on body weight of rats in different groups in course of 8 weeks</td>
<td>157</td>
</tr>
<tr>
<td>Figure no.</td>
<td>Title of figure</td>
<td>Page no.</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of OZ on food intake</td>
<td>158</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of OZ on water intake</td>
<td>158</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of OZ on serum TC level in diabetic nephropathy</td>
<td>160</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of OZ on serum TG level in diabetic nephropathy</td>
<td>160</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of OZ on serum LDL-C level in diabetic nephropathy</td>
<td>160</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of OZ on serum HDL-C level in diabetic nephropathy</td>
<td>160</td>
</tr>
<tr>
<td>4.14</td>
<td>Effect of OZ on serum ALP level in diabetic nephropathy</td>
<td>162</td>
</tr>
<tr>
<td>4.15</td>
<td>Effect of OZ on serum uric acid level in diabetic nephropathy</td>
<td>163</td>
</tr>
<tr>
<td>4.15</td>
<td>Effect of OZ on serum BUN level in diabetic nephropathy</td>
<td>163</td>
</tr>
<tr>
<td>4.15</td>
<td>Effect of OZ on serum creatinine level in diabetic nephropathy</td>
<td>164</td>
</tr>
<tr>
<td>4.15</td>
<td>Effect of OZ on serum albumin level in diabetic nephropathy</td>
<td>164</td>
</tr>
<tr>
<td>4.16</td>
<td>Effect of OZ on serum sodium concentration in diabetic nephropathy</td>
<td>166</td>
</tr>
<tr>
<td>4.16</td>
<td>Effect of OZ on serum potassium concentration in diabetic nephropathy</td>
<td>166</td>
</tr>
<tr>
<td>4.16</td>
<td>Effect of OZ on serum calcium concentration in diabetic nephropathy</td>
<td>166</td>
</tr>
<tr>
<td>4.16</td>
<td>Effect of OZ on serum magnesium concentration in diabetic nephropathy</td>
<td>166</td>
</tr>
<tr>
<td>4.16</td>
<td>Effect of OZ on serum chloride concentration in diabetic nephropathy</td>
<td>166</td>
</tr>
<tr>
<td>4.17</td>
<td>Effect of OZ on urine volume in diabetic nephropathy</td>
<td>169</td>
</tr>
<tr>
<td>4.17</td>
<td>Effect of OZ on urinary uric acid level in diabetic nephropathy</td>
<td>169</td>
</tr>
<tr>
<td>4.17</td>
<td>Effect of OZ on urinary creatinine level in diabetic nephropathy</td>
<td>170</td>
</tr>
<tr>
<td>4.17</td>
<td>Effect of OZ on urinary creatinine clearance in diabetic nephropathy</td>
<td>170</td>
</tr>
<tr>
<td>4.17</td>
<td>Effect of OZ on total urinary protein level in diabetic nephropathy</td>
<td>170</td>
</tr>
<tr>
<td>4.17</td>
<td>Effect of OZ on urinary albumin level in diabetic nephropathy</td>
<td>170</td>
</tr>
<tr>
<td>4.17</td>
<td>Effect of OZ on urine albumin-creatinine ratio in diabetic nephropathy</td>
<td>170</td>
</tr>
<tr>
<td>4.18</td>
<td>Representative images of hematoxylin-eosin stained renal sections of</td>
<td>172</td>
</tr>
<tr>
<td>4.18</td>
<td>Normal rats</td>
<td>172</td>
</tr>
<tr>
<td>4.18</td>
<td>Control treated animals receiving OZ 50 mg/kg p.o.</td>
<td>172</td>
</tr>
<tr>
<td>4.18</td>
<td>Control treated animals receiving OZ 100 mg/kg p.o.</td>
<td>173</td>
</tr>
<tr>
<td>4.18</td>
<td>Control treated animals receiving glibenclamide 10 mg/kg p.o.</td>
<td>173</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure no.</th>
<th>Title of figure</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. 18E</td>
<td>Diabetic control animals</td>
<td>173</td>
</tr>
<tr>
<td>4. 18F</td>
<td>Diabetic treated animals receiving OZ 50 mg/kg p.o.</td>
<td>173</td>
</tr>
<tr>
<td>4. 18G</td>
<td>Diabetic treated animals receiving OZ 100 mg/kg p.o.</td>
<td>173</td>
</tr>
<tr>
<td>4. 18H</td>
<td>Diabetic treated animals receiving glibenclamide 10 mg/kg p.o.</td>
<td>173</td>
</tr>
<tr>
<td>4.19A</td>
<td>Effect of OZ on pain threshold in diabetic rats subjected to warm water tail immersion test</td>
<td>176</td>
</tr>
<tr>
<td>4.19B</td>
<td>Effect of OZ on pain threshold in diabetic rats subjected to cold water tail immersion test</td>
<td>176</td>
</tr>
<tr>
<td>4.19C</td>
<td>Effect of OZ on pain threshold in diabetic rats subjected to hot plate test</td>
<td>176</td>
</tr>
<tr>
<td>4.20</td>
<td>Effect of OZ on neuromuscular strength in diabetic neuropathy</td>
<td>178</td>
</tr>
<tr>
<td>4.21A</td>
<td>Effect of OZ on paw flinching in diabetic rats during phase 1 of 0.5% formalin test</td>
<td>179</td>
</tr>
<tr>
<td>4.21B</td>
<td>Effect of OZ on paw flinching in diabetic rats during phase Q of 0.5% formalin test</td>
<td>179</td>
</tr>
<tr>
<td>4.21C</td>
<td>Effect of OZ on paw flinching in diabetic rats during phase 2 of 0.5% formalin test</td>
<td>180</td>
</tr>
<tr>
<td>4.22</td>
<td>Effect of OZ on sciatic nerve Na+-K+ ATPase activity in diabetic neuropathy</td>
<td>181</td>
</tr>
<tr>
<td>4.23A</td>
<td>Percentage proliferation of HCT-15 cell line by OZ</td>
<td>184</td>
</tr>
<tr>
<td>4.23B</td>
<td>Percentage proliferation of HEP-3B cell line by OZ</td>
<td>185</td>
</tr>
<tr>
<td>4.24A</td>
<td>Log concentration (μM) Vs % cell growth inhibition for OZ and doxorubicin against HCT-15 cell lines by MTT assay</td>
<td>187</td>
</tr>
<tr>
<td>4.24B</td>
<td>Log concentration (μM) Vs % cell growth inhibition for OZ and doxorubicin against HEP-3B cell lines by MTT assay</td>
<td>188</td>
</tr>
<tr>
<td>4.25</td>
<td>Induction of DNA fragmentation on different cancer cell lines treated by Lane 1: HCT-15 cell line (OZ); Lane 2: Hep3B cell line (OZ); Lane 3: 100 BP DNA ladder</td>
<td>189</td>
</tr>
<tr>
<td>4.26</td>
<td>Effect of OZ on change in body weight in CRC</td>
<td>192</td>
</tr>
<tr>
<td>4.27</td>
<td>Effect of OZ on absolute and relative liver weight in CRC</td>
<td>194</td>
</tr>
<tr>
<td>Figure no.</td>
<td>Title of figure</td>
<td>Page no.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.28</td>
<td>Effect of OZ on colon length in CRC</td>
<td>195</td>
</tr>
<tr>
<td>4.29</td>
<td>Effect of OZ on fecal occult blood test in CRC</td>
<td>196</td>
</tr>
<tr>
<td>4.30</td>
<td>Effect of OZ on the incidence of ACF in CRC</td>
<td>200</td>
</tr>
<tr>
<td>4.31</td>
<td>Histological examination of ACF of different sizes using hematoxylin-eosin staining</td>
<td>200</td>
</tr>
<tr>
<td>4.31A</td>
<td>Small ACF (1 crypt)</td>
<td>200</td>
</tr>
<tr>
<td>4.31B</td>
<td>Small ACF (2 crypts)</td>
<td>200</td>
</tr>
<tr>
<td>4.31C</td>
<td>Medium-sized ACF (3 crypts)</td>
<td>201</td>
</tr>
<tr>
<td>4.31D</td>
<td>Large ACF involving 4 or more crypts</td>
<td>201</td>
</tr>
<tr>
<td>4.32</td>
<td>Regional distribution of colonic ACF</td>
<td>202</td>
</tr>
<tr>
<td>4.33</td>
<td>Representative colonic lesions and colonic tumors</td>
<td>204</td>
</tr>
<tr>
<td>4.34</td>
<td>Effect of OZ on tumor multiplicity, tumor size, tumor volume, and tumor burden in CRC</td>
<td>205</td>
</tr>
<tr>
<td>4.35</td>
<td>Effect of OZ on serum LDH level in CRC</td>
<td>209</td>
</tr>
<tr>
<td>4.36</td>
<td>Effect of OZ on serum CRP level in CRC</td>
<td>210</td>
</tr>
<tr>
<td>4.37</td>
<td>Effect of OZ on serum ALP level in CRC</td>
<td>211</td>
</tr>
<tr>
<td>4.38</td>
<td>Effect of OZ on serum GGT level in CRC</td>
<td>213</td>
</tr>
<tr>
<td>4.39</td>
<td>Representative images of hematoxylin-eosin stained colonic sections of</td>
<td>215</td>
</tr>
<tr>
<td>4.39A</td>
<td>Normal animals</td>
<td>215</td>
</tr>
<tr>
<td>4.39B</td>
<td>Control treated animals receiving OZ</td>
<td>215</td>
</tr>
<tr>
<td>4.39C</td>
<td>Control treated animals receiving 5-FU</td>
<td>215</td>
</tr>
<tr>
<td>4.39D</td>
<td>Cancer induced animals receiving DMH</td>
<td>215</td>
</tr>
<tr>
<td>4.39E</td>
<td>DMH+OZ (I) co-treated animals</td>
<td>215</td>
</tr>
<tr>
<td>4.39F</td>
<td>DMH+OZ (PI) co-treated animals</td>
<td>215</td>
</tr>
<tr>
<td>4.39G</td>
<td>DMH+OZ (EP) co-treated animals</td>
<td>216</td>
</tr>
<tr>
<td>Figure no.</td>
<td>Title of figure</td>
<td>Page no.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>4.39H</td>
<td>DMH+5-FU (PI) co- treated animals</td>
<td>216</td>
</tr>
<tr>
<td>4.40</td>
<td>Effect of OZ on change in body weight in HCC</td>
<td>218</td>
</tr>
<tr>
<td>4.41</td>
<td>4.41A Effect of OZ on absolute liver weight in HCC</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>4.41B Effect of OZ on relative liver weight in HCC</td>
<td>220</td>
</tr>
<tr>
<td>4.42</td>
<td>4.42A Effect of OZ on serum AST level in HCC</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>4.42B Effect of OZ on serum ALT level in HCC</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>4.42C Effect of OZ on serum ALP level in HCC</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>4.42D Effect of OZ on serum LDH level in HCC</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>4.42E Effect of OZ on serum GGT level in HCC</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>4.42F Effect of OZ on serum bilirubin level in HCC</td>
<td>226</td>
</tr>
<tr>
<td>4.43</td>
<td>Effect of OZ on serum AFP level in HCC</td>
<td>229</td>
</tr>
<tr>
<td>4.44</td>
<td>4.44A Morphological examination of mice hepatic nodules at 32 weeks</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>4.44B Effect of OZ on the growth of macroscopic hepatocyte nodules</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>4.44C Effect of OZ on tumor multiplicity in hepatocellular carcinoma</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>4.44D 4.44D (i) Effect of OZ on the appearance of hepatocyte nodules</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>4.44D (ii) Effect of OZ on the appearance of hepatocyte nodules of >1mm<3mm</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>4.44D (iii) Effect of OZ on the appearance of hepatocyte nodules of >3 mm</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>4.44E Effect of OZ on the mean volume of hepatocyte nodules</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>4.44F Effect of OZ on nodular volume/liver volume</td>
<td>233</td>
</tr>
<tr>
<td>4.45</td>
<td>Representative images of hematoxylin-eosin stained liver sections of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.45A Normal animals</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>4.45B Control treated animals receiving OZ</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>4.45C Control treated animals receiving 5-FU</td>
<td>236</td>
</tr>
<tr>
<td>Figure no.</td>
<td>Title of figure</td>
<td>Page no.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>4.45D</td>
<td>Cancer induced animals receiving NDEA</td>
<td>236</td>
</tr>
<tr>
<td>4.45E</td>
<td>NDEA+OZ co-treated animals</td>
<td>237</td>
</tr>
<tr>
<td>4.45F</td>
<td>NDEA+5-FU co-treated animals</td>
<td>237</td>
</tr>
<tr>
<td>4.46</td>
<td>Effect of OZ on lipid peroxidation in</td>
<td></td>
</tr>
<tr>
<td>4.46A</td>
<td>Liver homogenate in diabetic rats</td>
<td>238</td>
</tr>
<tr>
<td>4.46B</td>
<td>Kidney homogenate in diabetic nephropathy</td>
<td>239</td>
</tr>
<tr>
<td>4.46C</td>
<td>Sciatic nerve homogenate in diabetic neuropathy</td>
<td>240</td>
</tr>
<tr>
<td>4.46D</td>
<td>Liver, colon and caecum homogenate in CRC</td>
<td>242</td>
</tr>
<tr>
<td>4.46E</td>
<td>Liver homogenate in HCC</td>
<td>243</td>
</tr>
<tr>
<td>4.47</td>
<td>Effect of OZ on reduced glutathione level in</td>
<td></td>
</tr>
<tr>
<td>4.47A</td>
<td>Liver homogenate in diabetic rats</td>
<td>245</td>
</tr>
<tr>
<td>4.47B</td>
<td>Kidney homogenate in diabetic nephropathy</td>
<td>245</td>
</tr>
<tr>
<td>4.47C</td>
<td>Sciatic nerve homogenate in diabetic neuropathy</td>
<td>246</td>
</tr>
<tr>
<td>4.47D</td>
<td>Liver, colon and caecum homogenate in CRC</td>
<td>248</td>
</tr>
<tr>
<td>4.47E</td>
<td>Liver homogenate in HCC</td>
<td>249</td>
</tr>
<tr>
<td>4.48</td>
<td>Effect of OZ on SOD activity in</td>
<td></td>
</tr>
<tr>
<td>4.48A</td>
<td>Liver homogenate in diabetic rats</td>
<td>251</td>
</tr>
<tr>
<td>4.48B</td>
<td>Kidney homogenate in diabetic nephropathy</td>
<td>252</td>
</tr>
<tr>
<td>4.48C</td>
<td>Sciatic nerve homogenate in diabetic neuropathy</td>
<td>252</td>
</tr>
<tr>
<td>4.48D</td>
<td>Liver, colon and caecum homogenate in CRC</td>
<td>254</td>
</tr>
<tr>
<td>4.48E</td>
<td>Liver homogenate in HCC</td>
<td>255</td>
</tr>
<tr>
<td>4.49</td>
<td>Effect of OZ on catalase activity in</td>
<td></td>
</tr>
<tr>
<td>4.49A</td>
<td>Kidney homogenate in diabetic nephropathy</td>
<td>252</td>
</tr>
<tr>
<td>4.49B</td>
<td>Sciatic nerve homogenate in diabetic neuropathy</td>
<td>252</td>
</tr>
<tr>
<td>4.49C</td>
<td>Liver, colon and caecum homogenate in CRC</td>
<td>254</td>
</tr>
<tr>
<td>Figure no.</td>
<td>Title of figure</td>
<td>Page no.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>4.49D</td>
<td>Liver homogenate in HCC</td>
<td>255</td>
</tr>
<tr>
<td>4.50</td>
<td>Effect of OZ on nitrite level in</td>
<td></td>
</tr>
<tr>
<td>4.50A</td>
<td>Kidney homogenate in diabetic nephropathy</td>
<td>257</td>
</tr>
<tr>
<td>4.50B</td>
<td>Sciatic nerve homogenate in diabetic neuropathy</td>
<td>257</td>
</tr>
<tr>
<td>4.50C</td>
<td>Colon homogenate in CRC</td>
<td>259</td>
</tr>
<tr>
<td>4.50D</td>
<td>Liver homogenate in HCC</td>
<td>260</td>
</tr>
<tr>
<td>4.51</td>
<td>Effect of OZ on DTH response</td>
<td>265</td>
</tr>
<tr>
<td>4.52</td>
<td>Effect of OZ on HA titre</td>
<td>266</td>
</tr>
<tr>
<td>4.53</td>
<td>Effect of OZ on phagocytic index</td>
<td>268</td>
</tr>
<tr>
<td>4.54</td>
<td>Effect of OZ on change in body weight</td>
<td>270</td>
</tr>
<tr>
<td>4.55</td>
<td>Effect of OZ on relative organ weights</td>
<td>271</td>
</tr>
<tr>
<td>4.56</td>
<td>Effect of OZ on blood cells of rats treated with CP for 10 days</td>
<td>272</td>
</tr>
<tr>
<td>4.57</td>
<td>Standard curve of OZ in phosphate buffer pH 7.4 at 327 nm</td>
<td>275</td>
</tr>
<tr>
<td>4.58</td>
<td>4.58A FTIR spectrum of pure soyphosphatidyl choline (SPC)</td>
<td>276</td>
</tr>
<tr>
<td>4.58B</td>
<td>FTIR spectrum of pure cholesterol</td>
<td>276</td>
</tr>
<tr>
<td>4.58C</td>
<td>FTIR spectrum of pure OZ</td>
<td>277</td>
</tr>
<tr>
<td>4.58D</td>
<td>FTIR spectrum of physical mixture of OZ and excipients</td>
<td>277</td>
</tr>
<tr>
<td>4.59</td>
<td>Solution stability of OZ under different pH conditions at room temperature</td>
<td>278</td>
</tr>
<tr>
<td>4.60</td>
<td>Solution stability of OZ in phosphate buffer - pH 7.4 at room temperature (25°C) and elevated temperature (60°C)</td>
<td>279</td>
</tr>
<tr>
<td>4.61</td>
<td>Representative photomicrographs of LEO prepared by REV method</td>
<td>280</td>
</tr>
<tr>
<td>4.62</td>
<td>Representative vesicle size analysis of 5:1-3% LEO formulation</td>
<td>281</td>
</tr>
<tr>
<td>4.63</td>
<td>Effect of % OZ content on vesicle size of liposomes</td>
<td>284</td>
</tr>
<tr>
<td>4.64</td>
<td>Effect of % OZ content on % EE of liposomes</td>
<td>284</td>
</tr>
<tr>
<td>4.65</td>
<td>Effect of % OZ content on LC of liposomes prepared</td>
<td>284</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure no.</th>
<th>Title of figure</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.66</td>
<td>Effect of % OZ content on in vitro drug release from prepared liposomes</td>
<td>287</td>
</tr>
<tr>
<td>4.67</td>
<td>4.67A Zero order plot of OZ release from prepared liposomes</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>4.67B First order plot of OZ release from prepared liposomes</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>4.67C Higuchi’s plot of OZ release from prepared liposomes</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>4.67D Korsmeyer’s plot of OZ release from prepared liposomes</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>4.67E Hixson Crowell plot of OZ release from prepared liposomes</td>
<td>291</td>
</tr>
<tr>
<td>4.68</td>
<td>Comparison of vesicle size (nm) of various LEO formulations on storage</td>
<td>295</td>
</tr>
<tr>
<td>4.69</td>
<td>Comparison of % EE of various LEO formulations on storage</td>
<td>297</td>
</tr>
<tr>
<td>4.70</td>
<td>Gas chromatogram for residual solvent estimation in liposomes of REV-1.10</td>
<td>298</td>
</tr>
<tr>
<td>4.71</td>
<td>Mean plasma OZ concentration–time profiles after oral administration of free OZ</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>and LEO</td>
<td></td>
</tr>
</tbody>
</table>