Chapter 7

THE APPLICATION OF DELPHI ADAPTED (WEIGHTED)
BIDIRECTIONAL ASSOCIATIVE MEMORIES (DABAM) IN THE
ANALYSIS OF WOMEN EMPOWERMENT THROUGH
CAPABILITIES

Not everyone accepts that empowerment can be clearly defined, let alone measured. For many feminists, the value of the concept lies precisely in its ‘fuzziness’.

- Kabeer (1999)

7.1 Capability Approach

The Capability approach, initially elaborated by Amartya Sen, represents an important point of reference in the research field of poverty and well-being analysis. But Sen has never made a list of the central capabilities. Capability of a person reflects a person’s freedom to choose between different ways of living (Sen, 2003). An approach that focuses on human capabilities, that is, what people are actually able to do and to be – in a way informed by an intuitive idea of a life that is worthy of the dignity of the human being (Nussbaum, 2003). Martha Nussbaum identified a list of central human capabilities, setting them in the context of a type of political liberalism that makes them specifically political goals and presents them in a manner free of any specific
metaphysical grounding. She found that capabilities could be the object of an overlapping consensus among people who otherwise have very different comprehensive conceptions of the good. She used the idea of a threshold level of each capability, beneath which it is held that truly human functioning is not available to citizens.

Already many studies have been carried out using this approach. Mitra (2006) used Capability approach to assess the employment and the standard of living of persons with disabilities. In the study, capability approach contributes a new and useful perspective on disability by differentiating two levels of the problem: the capability level and the functioning level.

While analyzing the dimensions of human development Alkire (2002) uses Sen’s capability approach and produces a list of dimensions with reference to capabilities that enable human development. In his study on many spaces of human well-being Clark (2005) shows that the capability approach provides a better framework for thinking about human well-being and development. He also argues that the capability approach overlaps with both utility and resource-based concepts of well-being. Nussbaum (2000) uses this approach in her study on women’s capabilities and social justice. She proposes the capabilities as goals for women’s development and at the end she states that “the capability approach may seem to have one disadvantage in comparison with these other approaches: it seems difficult to measure human capabilities” (Nussbaum, 2000). This observed disadvantage of capability approach can be compensated by fuzzy logic. This gives us scope for applying fuzzy logic.
We use Sen’s capability approach to analyze the empowerment of women by taking capabilities as nodes in domain space and the attributes related to women empowerment as nodes in the range space. The following list of capabilities is chosen in this chapter after analyzing the life of twenty successful Indian women and a field study was also done in the following areas Cementry Road, Anna Nagar and Nungambakkam to identify factors that contribute to women empowerment.

7.2 Analysis of the Problem using DABAM

The list of capabilities are selected as the nodes of the domain space

\[C_1 \rightarrow \text{Mental well-being and Resilience} \]
\[C_2 \rightarrow \text{Bodily integrity} \]
\[C_3 \rightarrow \text{Creative Imagination} \]
\[C_4 \rightarrow \text{Emotion stability} \]
\[C_5 \rightarrow \text{Social sensitivity} \]
\[C_6 \rightarrow \text{Recreational activity} \]
\[C_7 \rightarrow \text{Bodily control} \]
\[C_8 \rightarrow \text{Growth of self-regulation} \]
\[C_9 \rightarrow \text{Self-reorganization} \]

The following table gives the list of capabilities used by different studies in the past and the present.
Table: 7.1

Capabilities in different studies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim / Scope of the list</td>
<td>Universal</td>
<td>Universal</td>
<td>Gender inequality in western societies</td>
<td>Empowerment of Women in India</td>
</tr>
<tr>
<td>Dimensions</td>
<td>1. Life</td>
<td>1. Life</td>
<td>1. Life and physical health</td>
<td>1. Mental well-being and Resilience</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. Control over one’s environment</td>
<td>10. Mobility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11. Leisure activities</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12. Time-autonomy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13. Respect</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14. Religion</td>
<td></td>
</tr>
</tbody>
</table>
The following attributes related with empowerment of women are taken as nodes of the range space:

- **P₁** – Freedom of movement
- **P₂** – Economic Independence
- **P₃** – Education
- **P₄** – Decision making power
- **P₅** – Vocational preference
- **P₆** – Property right
- **P₇** – Respect
- **P₈** – Creating opportunities
- **P₉** – Dignified treatment
- **P₁₀** – Equality
- **P₁₁** – Self-esteem
- **P₁₂** – Right to privacy
- **P₁₃** – Change in social system and culture
- **P₁₄** – Freedom to express own thought
The following matrix is obtained from an expert opinion who is a professor in Chennai.

\[
\begin{pmatrix}
P_1 & P_2 & P_3 & P_4 & P_5 & P_6 & P_7 & P_8 & P_9 & P_{10} & P_{11} & P_{12} & P_{13} & P_{14} \\
C_1 & 0.5 & 0 & 0.7 & 1 & 0.3 & -1 & 0 & 0.2 & 0.5 & 0.5 & 1 & -0.5 & -1 & 0 \\
C_2 & 0 & -0.7 & 0.8 & 0.4 & 0.5 & -1 & 0.5 & 0 & 0.2 & 0 & 1 & 0 & -1 & -0.5 \\
C_3 & 0.5 & -1 & 1 & 0.5 & 0 & -1 & 0.8 & 0.4 & 0.5 & 0 & 0.5 & -1 & 0.8 & 1 \\
C_4 & 0.2 & 0 & 0.8 & 0.8 & 0.6 & 0 & 0.5 & 0 & 0.3 & 0 & 0.8 & 0.5 & 0.5 & 0.5 \\
N_1 = C_5 & 0.6 & 1 & 0.4 & 0.6 & 0.5 & 1 & 0.6 & 0 & 0.4 & 1 & 0.8 & 0 & 1 & 0.7 \\
C_6 & 0 & 0.3 & 0.5 & 0 & -1 & -1 & 0.5 & 0 & 0 & -1 & 0.4 & 0 & 0 & 0.5 \\
C_7 & 0.6 & 0.4 & 0.8 & 0.25 & 0 & 0 & 1 & -1 & 1 & 0.2 & 0.8 & 0 & 0 & 0.1 \\
C_8 & 1 & 0.4 & 0.2 & 1 & 0.5 & 0 & 1 & 0.2 & 0.9 & 0.5 & 1 & 0.6 & 0.4 & 0.5 \\
C_9 & 1 & 0.3 & 0.3 & 1 & 0.5 & 0 & 1 & 0.4 & 0.8 & 0.6 & 1 & 0.7 & 0.5 & 0.4 \\
\end{pmatrix}
\]

The following matrix is obtained form an expert opinion who is a college student in Chennai.

\[
\begin{pmatrix}
P_1 & P_2 & P_3 & P_4 & P_5 & P_6 & P_7 & P_8 & P_9 & P_{10} & P_{11} & P_{12} & P_{13} & P_{14} \\
C_1 & 0.3 & 0 & 0.4 & 1 & 0.2 & -1 & 0 & 0.2 & 0.5 & 0.6 & 0.8 & 0 & 0.2 & 0 \\
C_2 & 0 & -0.6 & 0.8 & 0.4 & 0.5 & -1 & 0.5 & 0.1 & 0.5 & 0.1 & 0.8 & 0.2 & -0.7 & -0.6 \\
C_3 & 0.6 & -0.8 & 1 & 0.6 & 0 & -1 & 0.7 & 0.5 & 0.4 & 0.1 & 0.6 & -0.8 & 0.3 & 1 \\
C_4 & 0.2 & 0.3 & 0.7 & 0.7 & 0.6 & 0.1 & 0.4 & 0 & 0.2 & 0.1 & 0.3 & 0.5 & 0.6 & 0.5 \\
N_2 = C_5 & 0.7 & 0.8 & 0.5 & 0.5 & 0.4 & 1 & 0.7 & 0.1 & 0.2 & 0.8 & 0.5 & 0.1 & 0.8 & 0.4 \\
C_6 & 0 & 0.3 & 0.5 & 0 & -0.8 & -0.8 & 0.5 & 0 & 0 & -0.8 & 0.4 & 0 & 0 & 0.2 \\
C_7 & 0.6 & 0.3 & 0.5 & 0.8 & 0 & 0 & 1 & -1 & 1 & 0.1 & 0.5 & 0 & 0 & 0.2 \\
C_8 & 0.8 & 0.5 & 0.3 & 0.8 & 0.5 & 0 & 1 & 0.2 & 0.8 & 0.7 & 1 & 0.5 & 0.3 & 0.5 \\
C_9 & 1 & 0.2 & 0.4 & 0.8 & 0.5 & 0 & 1 & 0.4 & 0.6 & 0.4 & 0.8 & 0.6 & 0.4 & 0.2 \\
\end{pmatrix}
\]
The following matrix is obtained from an expert opinion who is a daily wage labourer in Royapuram

\[
\begin{array}{cccccccccccccc}
& P_1 & P_2 & P_3 & P_4 & P_5 & P_6 & P_7 & P_8 & P_9 & P_{10} & P_{11} & P_{12} & P_{13} & P_{14} \\
C_1 & 0.6 & 0.1 & 0.5 & 0.8 & 0.2 & -0.6 & 0.1 & 0.2 & 0.5 & 0.5 & 1 & -0.7 & -1 & 0 \\
C_2 & 0.1 & -0.6 & 0.8 & 0.4 & 0.4 & 0 & 0.6 & 0 & 0.3 & 0 & 0.9 & 0 & -1 & 0 \\
C_3 & 0.4 & -0.9 & 0.8 & 0.5 & 0.1 & 0 & 0.5 & 0.5 & 0.6 & 0 & 0.6 & 1 & 0.8 & 1 \\
C_4 & 0.1 & 0.1 & 0.5 & 0.6 & 0.5 & 0.1 & 0.6 & 0 & 0.3 & 0 & 0.8 & -0.5 & 0.6 & 0.5 \\
N_3 = C_5 & 0.5 & 1 & 0.3 & 0.5 & 0.6 & 1 & 0.6 & 0 & 0.4 & 1 & 0.9 & 0 & 1 & 0.3 \\
C_6 & 0.1 & 0.2 & 0.5 & 0 & -0.9 & 0 & 0.5 & 0 & 0 & 0.1 & 0.4 & 0.1 & 0.1 & 0.5 \\
C_7 & 0.3 & 0.4 & 0.5 & 1 & 0 & 0 & 1 & 0 & 1 & 0.3 & 0.5 & 0.2 & 0 & 0.5 \\
C_8 & 1 & 0.2 & 0.4 & 1 & 0.7 & 0 & 1 & 0.5 & 0.3 & 0.9 & 0.5 & 0.7 & 0.4 & 0.5 \\
C_9 & 1 & 0.3 & 0.6 & 1 & 0.5 & 0 & 1 & 0.5 & 0.4 & 0.8 & 0.7 & 1 & 0.6 & 0.4 \\
\end{array}
\]

The Delphi process of combining these three expert opinions is given in the following table.

Table 7.2 DABAM Procedure
<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th></th>
<th></th>
<th>P2</th>
<th></th>
<th></th>
<th>P3</th>
<th></th>
<th></th>
<th>P4</th>
<th></th>
<th></th>
<th>P5</th>
<th></th>
<th></th>
<th>P6</th>
<th></th>
<th></th>
<th>P7</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>C1</td>
<td>1.2</td>
<td>1.67</td>
<td>2</td>
<td>0</td>
<td>0.1</td>
<td>0.3</td>
<td>1.5</td>
<td>1.97</td>
<td>2.8</td>
<td>2.4</td>
<td>3.47</td>
<td>4</td>
<td>0.6</td>
<td>0.87</td>
<td>1.2</td>
<td>-4</td>
<td>-3.27</td>
<td>-1.8</td>
<td>0</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>C2</td>
<td>0</td>
<td>0.1</td>
<td>0.3</td>
<td>-2.8</td>
<td>-2.3</td>
<td>-1.8</td>
<td>2.4</td>
<td>2.93</td>
<td>3.2</td>
<td>1.2</td>
<td>1.47</td>
<td>1.6</td>
<td>1.2</td>
<td>1.73</td>
<td>2</td>
<td>-4</td>
<td>-3.67</td>
<td>-3</td>
<td>1.8</td>
<td>1.93</td>
<td>2</td>
</tr>
<tr>
<td>C3</td>
<td>1.2</td>
<td>1.87</td>
<td>2.4</td>
<td>-4</td>
<td>-3.3</td>
<td>-2.7</td>
<td>2.4</td>
<td>3.47</td>
<td>4</td>
<td>1.5</td>
<td>1.97</td>
<td>2.4</td>
<td>0</td>
<td>0.1</td>
<td>0.3</td>
<td>-4</td>
<td>-3.67</td>
<td>-3</td>
<td>1.5</td>
<td>2.5</td>
<td>3.2</td>
</tr>
<tr>
<td>C4</td>
<td>0.3</td>
<td>0.63</td>
<td>0.8</td>
<td>0</td>
<td>0.5</td>
<td>1.3</td>
<td>1.5</td>
<td>2.5</td>
<td>3.2</td>
<td>1.8</td>
<td>2.6</td>
<td>3.2</td>
<td>1.5</td>
<td>2.1</td>
<td>2.4</td>
<td>0</td>
<td>0.23</td>
<td>0.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>C5</td>
<td>1.5</td>
<td>2.23</td>
<td>2.8</td>
<td>3</td>
<td>3.4</td>
<td>4</td>
<td>0.9</td>
<td>1.5</td>
<td>2</td>
<td>1.5</td>
<td>1.97</td>
<td>2.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2</td>
<td>3</td>
<td>3.67</td>
<td>4</td>
<td>1.8</td>
<td>2.33</td>
<td>2.8</td>
</tr>
<tr>
<td>C6</td>
<td>0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.6</td>
<td>1</td>
<td>1.2</td>
<td>1.5</td>
<td>1.83</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>-3.3</td>
<td>-2.7</td>
<td>-4</td>
<td>-3.4</td>
<td>-3</td>
<td>1.5</td>
<td>1.83</td>
<td>2</td>
</tr>
<tr>
<td>C7</td>
<td>0.9</td>
<td>1.9</td>
<td>2.4</td>
<td>1.2</td>
<td>1.33</td>
<td>1.6</td>
<td>1.5</td>
<td>2.23</td>
<td>3.2</td>
<td>1</td>
<td>2.4</td>
<td>3.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3.67</td>
</tr>
<tr>
<td>C8</td>
<td>3</td>
<td>3.4</td>
<td>4</td>
<td>0.6</td>
<td>1.4</td>
<td>2</td>
<td>0.8</td>
<td>1.06</td>
<td>1.2</td>
<td>3</td>
<td>3.4</td>
<td>4</td>
<td>2</td>
<td>2.03</td>
<td>2.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3.67</td>
</tr>
<tr>
<td>C9</td>
<td>3</td>
<td>3.67</td>
<td>4</td>
<td>0.8</td>
<td>0.97</td>
<td>1.2</td>
<td>1.2</td>
<td>1.53</td>
<td>1.8</td>
<td>3</td>
<td>3.4</td>
<td>4</td>
<td>1.5</td>
<td>1.833</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3.67</td>
</tr>
<tr>
<td></td>
<td>P8</td>
<td>P9</td>
<td>P10</td>
<td>P11</td>
<td>P12</td>
<td>P13</td>
<td>P14</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>M</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>0.6</td>
<td>0.73</td>
<td>0.8</td>
<td>1.5</td>
<td>1.833</td>
<td>2</td>
<td>1.5</td>
<td>1.967</td>
<td>2.4</td>
<td>3</td>
<td>3.4</td>
<td>4</td>
<td>-2.1</td>
<td>-1.367</td>
<td>0</td>
<td>-4</td>
<td>2.067</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C2</td>
<td>0</td>
<td>0.13</td>
<td>0.4</td>
<td>0.8</td>
<td>0.633</td>
<td>2</td>
<td>0</td>
<td>0.133</td>
<td>0.4</td>
<td>2.7</td>
<td>3.3</td>
<td>4</td>
<td>0</td>
<td>0.27</td>
<td>0.8</td>
<td>-4</td>
<td>3.267</td>
<td>-2.8</td>
<td>-2</td>
<td>-1.467</td>
<td>0</td>
</tr>
<tr>
<td>C3</td>
<td>1.5</td>
<td>1.7</td>
<td>2.0</td>
<td>0.8</td>
<td>1.467</td>
<td>2</td>
<td>0</td>
<td>0.133</td>
<td>0.4</td>
<td>1.8</td>
<td>2.067</td>
<td>2.4</td>
<td>-4</td>
<td>-1.4</td>
<td>3</td>
<td>1.2</td>
<td>2.267</td>
<td>3.2</td>
<td>3</td>
<td>3.67</td>
<td>4</td>
</tr>
<tr>
<td>C4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>0.967</td>
<td>1.2</td>
<td>0</td>
<td>0.133</td>
<td>0.4</td>
<td>1.2</td>
<td>2.267</td>
<td>3.2</td>
<td>-1.5</td>
<td>0.833</td>
<td>2</td>
<td>1.8</td>
<td>2.067</td>
<td>2.4</td>
<td>1.5</td>
<td>1.967</td>
<td>2.4</td>
</tr>
<tr>
<td>C5</td>
<td>0</td>
<td>0.13</td>
<td>0.4</td>
<td>0.8</td>
<td>1.2</td>
<td>1.6</td>
<td>3</td>
<td>3.4</td>
<td>4</td>
<td>2</td>
<td>2.63</td>
<td>3.2</td>
<td>0</td>
<td>0.133</td>
<td>0.4</td>
<td>3</td>
<td>3.4</td>
<td>4</td>
<td>0.9</td>
<td>1.77</td>
<td>2.8</td>
</tr>
<tr>
<td>C6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>-2.3</td>
<td>0.3</td>
<td>1.2</td>
<td>1.47</td>
<td>1.6</td>
<td>0</td>
<td>0.1</td>
<td>0.3</td>
<td>0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.8</td>
<td>1.43</td>
<td>2</td>
</tr>
<tr>
<td>C7</td>
<td>-4</td>
<td>-3.67</td>
<td>-3</td>
<td>3</td>
<td>3.67</td>
<td>4</td>
<td>0.4</td>
<td>0.7</td>
<td>0.9</td>
<td>1.5</td>
<td>2.23</td>
<td>3.2</td>
<td>0</td>
<td>0.2</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>C8</td>
<td>0.8</td>
<td>1.033</td>
<td>1.5</td>
<td>0.9</td>
<td>2.57</td>
<td>3.6</td>
<td>2.0</td>
<td>2.5</td>
<td>2.8</td>
<td>1.5</td>
<td>3.17</td>
<td>4</td>
<td>2</td>
<td>2.17</td>
<td>2.4</td>
<td>1.2</td>
<td>1.33</td>
<td>1.6</td>
<td>1.5</td>
<td>1.83</td>
<td>2</td>
</tr>
<tr>
<td>C9</td>
<td>1.5</td>
<td>1.56</td>
<td>1.6</td>
<td>1.2</td>
<td>2.27</td>
<td>3.2</td>
<td>1.6</td>
<td>2.13</td>
<td>2.4</td>
<td>2.1</td>
<td>3.1</td>
<td>4</td>
<td>2.4</td>
<td>2.73</td>
<td>3</td>
<td>1.6</td>
<td>1.8</td>
<td>2</td>
<td>0.8</td>
<td>1.2</td>
<td>1.6</td>
</tr>
</tbody>
</table>
The relational matrix obtained through Delphi process is given by M

\[
C = \begin{pmatrix}
1.6 & 0.1 & 2.1 & 3.3 & 0.9 & -3 & 0.1 & 0.7 & 1.8 & 2 & 3.5 & -1.2 & -1.8 & 0 \\
0.1 & -2.3 & 2.8 & 1.4 & 1.6 & -3.6 & 1.9 & 0.2 & 1.1 & 0.2 & 3.3 & 0.36 & -3.4 & -1.2 \\
1.8 & -3.3 & 3.3 & 2 & 0.1 & -3.6 & 2.4 & 1.7 & 1.4 & 0.2 & 2.1 & -0.8 & 2.2 & 3.6 \\
0.6 & 0.6 & 2.4 & 2.5 & 2 & 0.2 & 1.8 & 0 & 1 & 0.2 & 2.2 & 0.4 & 2.1 & 2 \\
2.2 & 3.5 & 1.46 & 2 & 1.8 & 3.6 & 2.3 & 0.2 & 1.2 & 3.5 & 2.6 & 0.2 & 3.5 & 1.8 \\
0.1 & 0.9 & 1.8 & 0 & 3.3 & -3.5 & 1.8 & 0 & 0 & -2 & 1.4 & 0.1 & 0.1 & 1.4 \\
1.7 & 1.4 & 2.3 & 2.2 & 0 & 0 & 3.6 & 3.6 & 3.6 & 0.7 & 2.3 & 0.3 & 0 & 0.9 \\
3.5 & 1.3 & 1 & 3.5 & 2 & 0 & 3.6 & 1 & 2.4 & 2.4 & 2.9 & 2.2 & 1.4 & 1.8 \\
3.6 & 1 & 1.5 & 3.5 & 1.7 & 0 & 3.6 & 1.6 & 2.2 & 2 & 3 & 2.7 & 1.8 & 1.2
\end{pmatrix}
\]

$M = C$

Consider an input vector $(1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0)$ where the first attribute *mental well-being and resilience* is kept in ON state. We proceed as follows to obtain the limit point of the dynamical system:

$S(X_k) = (1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0)$

$S(X_k) \cdot M = (1.6\ 0.1\ 2.1\ 3.3\ 0.9\ -3\ 0.1\ 0.7\ 1.8\ 2\ 3.5\ -1.2\ -1.8\ 0)$

$\Rightarrow (0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0) = y_{k+1}$

$S(y_{k+1}) \cdot M^T = (6.8\ 4.7\ 4.1\ 4.7\ 4.6\ 1.4\ 4.5\ 6.4\ 6.5)$

$\Rightarrow (1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1) = X_{k+2}$

$S(X_{k+2}) \cdot M = (5.2\ 1.1\ 3.6\ 6.8\ 2.6\ -3\ 3.7\ 2.3\ 4\ 4\ 6.5\ 1.5\ 0\ 1.2)$

$\Rightarrow (0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0) = y_{k+3}$

$S(y_{k+3}) \cdot M^T = (6.8\ 4.7\ 4.1\ 4.7\ 4.6\ 1.4\ 4.5\ 6.4\ 6.5)$
\(\rightarrow (1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1) = X_{k+3} \)

The binary pair \{\{(00010000001000), (100000001)\}\} gives the limit point for the dynamical system.

Consider an input vector \((0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0)\) where the attribute *bodily integrity* is kept in ON state. We proceed as follows to obtain the limit point of the dynamical system:

\(S(X_k) = (0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) \)

\(S(X_k) \cdot M = (0.1 \ -2.3 \ 2.8 \ 1.4 \ 1.6 \ -3.6 \ 1.9 \ 0.2 \ 1.1 \ 0.2 \ 3.3 \ 0.36 \ -3.4 \ -1.2) \)

\(\rightarrow (0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0) = y_{k+1} \)

\(S(y_{k+1}) \cdot M^T = (5.6 \ 6.1 \ 5.4 \ 4.6 \ 4.06 \ 3.2 \ 4.6 \ 3.9 \ 4.5) \)

\(\rightarrow (1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = X_{k+2} \)

\(S(X_{k+2}) \cdot M = (1.7 \ -2.2 \ 4.9 \ 4.7 \ 2.5 \ -6.6 \ 2 \ 0.9 \ 2.9 \ 2.2 \ 6.8 \ -0.84 \ -5.2 \ -1.2) \)

\(\rightarrow (0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0) = y_{k+3} \)

\(S(y_{k+3}) \cdot M^T = (5.6 \ 6.1 \ 5.4 \ 4.6 \ 4.06 \ 3.2 \ 4.6 \ 3.9 \ 4.5) \)

\(\rightarrow (1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0) = X_{k+4} \)

The binary pair \{\{(00100000000100), (110000000)\}\} gives the limit point for the dynamical system.
Consider an input vector \((0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0)\) where the attribute *creative imagination* is kept in ON state. We proceed as follows to obtain the limit point of the dynamical system:

\[
S(X_k) = (0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0)
\]

\[
S(X_k) \cdot M = \begin{pmatrix} 1.8 & -3.3 & 3.3 & 2 & 0.1 & -3.6 & 2.4 & 1.7 & 1.4 & 0.2 & 2.1 & -0.8 & 2.2 & 3.6 \end{pmatrix}
\]

\[
\Rightarrow (0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = y_{k+1}
\]

\[
S(y_{k+1}) \cdot M^T = \begin{pmatrix} 5.6 & 6.1 & 5.4 & 4.6 & 4.06 & 3.2 & 4.6 & 3.9 & 4.5 \end{pmatrix}
\]

\[
\Rightarrow (1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = X_{k+2}
\]

\[
S(X_{k+2}) \cdot M = \begin{pmatrix} 1.7 & -2.2 & 4.9 & 4.7 & 2.5 & -6.6 & 2 & 0.9 & 2.9 & 2.2 & 6.8 & -0.84 & -5.2 & -1.2 \end{pmatrix}
\]

\[
\Rightarrow (0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0) = y_{k+3}
\]

\[
S(y_{k+3}) \cdot M^T = \begin{pmatrix} 5.6 & 6.1 & 5.4 & 4.6 & 4.06 & 3.2 & 4.6 & 3.9 & 4.5 \end{pmatrix}
\]

\[
\Rightarrow (1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = X_{k+4}
\]

The binary pair \{\((001000000001), \ (110000000)\)\} gives the limit point for the dynamical system.

Consider an input vector \((0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0)\) where the attribute *emotion stability* is kept in ON state. We proceed as follows to obtain the limit point of the dynamical system:

\[
S(X_k) = (0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0)
\]
\[S(X_k) \cdot M = (0.6 \ 0.6 \ 2.4 \ 2.5 \ 2 \ 0.2 \ 1.8 \ 0 \ 1 \ 0.2 \ 2.2 \ 0.4 \ 2.1 \ 2) \]
\[\Rightarrow (0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = y_{k+1} \]
\[S(y_{k+1}) \cdot M^T = (5.4 \ 4.2 \ 5.3 \ 4.9 \ 3.46 \ 1.8 \ 4.5 \ 4.5 \ 5) \]
\[\Rightarrow (1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0) = X_{k+2} \]
\[S(X_{k+2}) \cdot M = (4 \ -2.6 \ 7.8 \ 7.8 \ 3 \ -6.4 \ 4.3 \ 2.4 \ 4.2 \ 2.4 \ 7.8 \ -1.6 \ 2.5 \ 5.6) \]
\[\Rightarrow (0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0) = y_{k+3} \]
\[S(y_{k+3}) \cdot M^T = (9 \ 9.4 \ 9.8 \ 8.9 \ 8.36 \ 5 \ 10.4 \ 11 \ 11.6) \]
\[\Rightarrow (0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1) = X_{k+4} \]
\[S(X_{k+4}) \cdot M = (7.7 \ 2.9 \ 4.9 \ 9.5 \ 5.7 \ 0.2 \ 9 \ 2.6 \ 5.6 \ 4.6 \ 8.1 \ 5.3 \ 5.3 \ 5) \]
\[\Rightarrow (0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = y_{k+5} \]
\[S(y_{k+5}) \cdot M^T = (3.4 \ 3.3 \ 4.4 \ 4.3 \ 4.3 \ 1.8 \ 5.8 \ 7.1 \ 7.1) \]
\[\Rightarrow (0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1) = X_{k+6} \]
\[S(X_{k+6}) \cdot M = (9.4 \ 4.3 \ 7.2 \ 11.7 \ 5.7 \ 0.2 \ 12.6 \ 6.2 \ 9.2 \ 5.3 \ 10.4 \ 5.6 \ 5.3 \ 5.9) \]
\[\Rightarrow (0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = y_{k+7} \]
\[S(y_{k+7}) \cdot M^T = (3.4 \ 3.3 \ 4.4 \ 4.3 \ 4.3 \ 1.8 \ 5.8 \ 7.1 \ 7.1) \]
\[\Rightarrow (0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1) = X_{k+8} \]

The binary pair \{(00010010000000), (000100111)\} gives the limit point for the dynamical system.
Consider an input vector \((0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0)\) where the attribute *social sensitivity* is kept in ON state. We proceed as follows to obtain the limit point of the dynamical system:

\[
S(X_k) = (0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0)
\]

\[
S(X_k) \cdot M = (2.2\ 3.5\ 1.46\ 2\ 1.8\ 3.6\ 2.3\ 0.2\ 1.2\ 3.5\ 2.6\ 0.2\ 3.5\ 1.8)
\]

\[
\Rightarrow (0\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 0) = y_{k+1}
\]

\[
S(y_{k+1}) \cdot M^T = (-2.7\ -9.1\ -4.5\ 3.1\ 14.1\ -4.5\ 2.1\ 5.1\ 4.8)
\]

\[
\Rightarrow (0\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 0) = X_{k+2}
\]

\[
S(X_{k+2}) \cdot M = (5.7\ 4.8\ 2.46\ 5.5\ 3.8\ 3.6\ 5.9\ 1.2\ 3.6\ 5.9\ 5.5\ 2.4\ 4.9\ 3.6)
\]

\[
\Rightarrow (1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0) = y_{k+3}
\]

\[
S(y_{k+3}) \cdot M^T = (3.7\ 2.2\ 4.4\ 2.6\ 8\ -0.1\ 6\ 9.5\ 9.2)
\]

\[
\Rightarrow (0\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 1) = X_{k+4}
\]

\[
S(X_{k+4}) \cdot M = (9.3\ 5.8\ 3.96\ 9\ 5.5\ 3.6\ 9.5\ 2.8\ 5.8\ 7.9\ 8.5\ 5.1\ 6.7\ 4.8)
\]

\[
\Rightarrow (1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0) = y_{k+5}
\]

\[
S(y_{k+5}) \cdot M^T = (1.7\ 2\ 4.2\ 2.4\ 4.5\ 1.9\ 5.3\ 7.1\ 7.2)
\]

\[
\Rightarrow (0\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 1) = X_{k+6}
\]

\[
S(X_{k+6}) \cdot M = (9.3\ 5.8\ 3.96\ 9\ 5.5\ 3.6\ 9.5\ 2.8\ 5.8\ 7.9\ 8.5\ 5.1\ 6.7\ 4.8)
\]

\[
\Rightarrow (1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0) = y_{k+7}
\]
\[S(y_{k+7}) \cdot M^T = (1.7 \ 2 \ 4.2 \ 2.4 \ 4.5 \ 1.9 \ 5.3 \ 7.1 \ 7.2) \]

\[\Leftrightarrow (0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1) = X_{k+8} \]

The binary pair \{(10000010000000), (000010011)\} gives the limit point for the dynamical system.

Consider an input vector \((0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0) \) where the attribute \textit{recreational activity} is kept in ON state. We proceed as follows to obtain the limit point of the dynamical system:

\[S(X_k) = (0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0) \]
\[S(X_k) \cdot M = (0.1 \ 0.9 \ 1.8 \ 0 \ 3.3 \ -3.5 \ 1.8 \ 0 \ 0 \ -2 \ 1.4 \ 0.1 \ 0.1 \ 1.4) \]

\[\Leftrightarrow (0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = y_{k+1} \]

\[S(y_{k+1}) \cdot M^T = (3.1 \ 6.3 \ 5.8 \ 6.2 \ 5.56 \ 6.9 \ 5.9 \ 6.6 \ 6.8) \]

\[\Leftrightarrow (0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = X_{k+2} \]

\[S(X_{k+2}) \cdot M = (3.7 \ 1.9 \ 3.3 \ 3.5 \ 5 \ -3.5 \ 5.4 \ 1.6 \ 2.2 \ 0 \ 4.4 \ 2.8 \ 1.9 \ 2.6) \]

\[\Leftrightarrow (0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = y_{k+3} \]

\[S(y_{k+3}) \cdot M^T = (1 \ 3.5 \ 2.5 \ 3.8 \ 4.1 \ 5.1 \ 3.6 \ 5.6 \ 5.3) \]

\[\Leftrightarrow (0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1) = X_{k+4} \]

\[S(X_{k+4}) \cdot M = (7.2 \ 3.2 \ 4.3 \ 7 \ 7 \ -3.5 \ 9 \ 2.6 \ 4.6 \ 2.4 \ 7.3 \ 5 \ 3.3 \ 4.4) \]

\[\Leftrightarrow (0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0) = y_{k+5} \]

\[S(y_{k+5}) \cdot M^T = (3.6 \ 5.2 \ 4.5 \ 4 \ 4.9 \ 3.2 \ 5.9 \ 6.5 \ 6.3) \]
The binary pair \{(00000100010000), (00000101110000)\} gives the limit point for the dynamical system.

Consider an input vector \((0 0 0 0 0 1 0 0) \) where the attribute \textit{bodily control} is kept in ON state. We proceed as follows to obtain the limit point of the dynamical system:

\[S(X_k) = (0 0 0 0 0 0 1 0 0) \]
\[S(X_k) \cdot M = (1.7 1.4 2.3 2.2 0 0 3.6 3.6 3.6 0.7 2.3 0.3 0 0.9) \]
\[\Rightarrow (0 0 1 0 0 0 1 1 1 0 1 0 0 0) = y_{k+1} \]

\[S(y_{k+1}) \cdot M^T = (8.2 9.3 10.9 7.4 7.76 5 15.4 10.9 11.9) \]
\[\Rightarrow (0 0 0 0 0 0 1 0 1 0 0 0 0) = X_{k+2} \]

\[S(X_{k+2}) \cdot M = (5.3 2.4 3.8 5.7 1.7 0 7.2 5.2 5.8 2.7 5.3 3 1.8 2.1) \]
\[\Rightarrow (0 0 0 0 0 0 0 1 0 1 0 0 0 0) = y_{k+3} \]

\[S(y_{k+3}) \cdot M^T = (1.9 3 3.8 2.8 3.5 1.8 7.2 6 5.8) \]
\[\Rightarrow (0 0 0 0 0 0 1 1 0) = X_{k+4} \]

\[S(X_{k+4}) \cdot M = (5.2 2.7 3.3 5.7 2 0 7.2 4.6 6 3.1 5.2 2.5 1.4 2.7) \]
\[\Rightarrow (0 0 0 0 0 0 1 0 1 0 0 0 0) = y_{k+5} \]

\[S(y_{k+5}) \cdot M^T = (1.9 3 3.8 2.8 3.5 1.8 7.2 6 5.8) \]
\[\Rightarrow (0 0 0 0 0 0 1 1 0) = X_{k+6} \]
The binary pair \(\{(00000010100000), (000000011)\} \) gives the limit point for the dynamical system.

Consider an input vector \((0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0) \) where the attribute _growth of self-regulation_ is kept in ON state. We proceed as follows to obtain the limit point of the dynamical system:

\[
S(X_k) = (0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0)
\]

\[
S(X_k) \cdot M = (3.5 \ 1.3 \ 1 \ 3.5 \ 2 \ 0 \ 3.6 \ 1 \ 2.4 \ 2.4 \ 2.9 \ 2.2 \ 1.4 \ 1.8)
\]

\[\Leftrightarrow (1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = y_{k+1}\]

\[
S(y_{k+1}) \cdot M^T = (5 \ 3.4 \ 6.2 \ 4.9 \ 6.5 \ 1.9 \ 7.5 \ 10.6 \ 10.7)
\]

\[\Leftrightarrow (0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1) = X_{k+2}\]

\[
S(X_{k+2}) \cdot M = (7.1 \ 2.3 \ 2.5 \ 7 \ 3.7 \ 0 \ 7.2 \ 2.6 \ 4.6 \ 4.4 \ 5.9 \ 4.9 \ 3.2 \ 3)
\]

\[\Leftrightarrow (1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = y_{k+3}\]

\[
S(y_{k+3}) \cdot M^T = (1.7 \ 2 \ 4.2 \ 2.4 \ 4.5 \ 1.9 \ 5.3 \ 7.1 \ 7.2)
\]

\[\Leftrightarrow (0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1) = X_{k+4}\]

The binary pair \(\{(10000010000000), (000000011)\} \) gives the limit point for the dynamical system.

Consider an input vector \((0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1) \) where the attribute _self-reorganization_ is kept in ON state. We proceed as follows to obtain the limit point of the dynamical system:
\(S(X_k) = (0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1) \)

\(S(X_k) \cdot M = (3.6 \ 1 \ 1.5 \ 3.5 \ 1.7 \ 0 \ 3.6 \ 1.6 \ 2.2 \ 2 \ 3 \ 2.7 \ 1.8 \ 1.2) \)

\(\forall (1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = y_{k+1} \)

\(S(y_{k+1}) \cdot M^T = (5 \ 3.4 \ 6.2 \ 4.9 \ 6.5 \ 1.9 \ 7.5 \ 10.6 \ 10.7) \)

\(\forall (0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1) = X_{k+2} \)

\(S(X_{k+2}) \cdot M = (7.1 \ 2.3 \ 2.5 \ 7 \ 3.7 \ 0 \ 7.2 \ 2.6 \ 4.6 \ 4.4 \ 5.9 \ 4.9 \ 3.2 \ 3) \)

\(\forall (1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0) = y_{k+3} \)

\(S(y_{k+3}) \cdot M^T = (1.7 \ 2 \ 4.2 \ 2.4 \ 4.5 \ 1.9 \ 5.3 \ 7.1 \ 7.2) \)

\(\forall (0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1) = X_{k+4} \)

The binary pair \{\((10000010000000),\ (000000011)\}\} gives the limit point for the dynamical system.

The following table gives different limit points we get for various input vectors.

Table: 7.3 Limit Points for DABAM

<table>
<thead>
<tr>
<th>Input vector</th>
<th>Limit point</th>
</tr>
</thead>
<tbody>
<tr>
<td>(100000000)</td>
<td>(0001000000001000), (100000001)</td>
</tr>
<tr>
<td>(010000000)</td>
<td>(0010000000001000), (110000000)</td>
</tr>
<tr>
<td>(001000000)</td>
<td>(001000000000001), (001100000)</td>
</tr>
<tr>
<td>(000100000)</td>
<td>(0001001000000000), (000100111)</td>
</tr>
<tr>
<td>(000010000)</td>
<td>(1000001000000000), (000010011)</td>
</tr>
<tr>
<td>(000001000)</td>
<td>(000001000000000), (000010111)</td>
</tr>
<tr>
<td>(000000100)</td>
<td>(000000100000000), (000001011)</td>
</tr>
<tr>
<td>(000000010)</td>
<td>(1000000100000000), (000000110)</td>
</tr>
<tr>
<td>(000000001)</td>
<td>(1000000100000000), (000000011)</td>
</tr>
</tbody>
</table>
7.3 Conclusion and suggestions

Inferences can be made from the list of limit points enumerated in the table above. For the first input vector, the limit point implies that when C_1 is kept in ON state, it pushes C_9 also to ON state and they, together, affect P_4 and P_{11} in the range space. That is, the capabilities Mental well-being and Resilience and Self-reorganization affect Decision making power and Self-esteem of women which are vital for their empowerment. Therefore due importance should be given to improve mental wellbeing of women. Seminars and courses can be offered to women students in colleges on the importance of mental wellbeing and self-reorganisation.

It can be observed that when C_4 is kept in ON state, it turns ON four more attributes in the domain space itself, which is the maximum, and two nodes P_4 and P_7 in the range space. Therefore C_4 (Emotion stability) plays a crucial role in women empowerment. Emotion stability plays a crucial role in women empowerment. As Indian women tend to be more emotional, lack of emotional stability becomes a hindrance for them from being empowered. Students should be instructed on the need for an improved emotional quotient (EQ).

Next in the list are C_5 and C_6 which, when kept in ON state, push three nodes in the domain and two in the range space to ON state. Therefore they, Social sensitivity and Recreational activity assume the next importance. Similar inferences can be made from the table.